Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing
dc.contributor.author | Huang, ZY | en_AU |
dc.contributor.author | Chu, MH | en_AU |
dc.contributor.author | Wang, R | en_AU |
dc.contributor.author | Zhu, WM | en_AU |
dc.contributor.author | Zhao, WG | en_AU |
dc.contributor.author | Wang, CQ | en_AU |
dc.contributor.author | Zhang, YJ | en_AU |
dc.contributor.author | He, LH | en_AU |
dc.contributor.author | Chen, J | en_AU |
dc.contributor.author | Deng, SH | en_AU |
dc.contributor.author | Mei, LW | en_AU |
dc.contributor.author | Kan, WH | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Pan, F | en_AU |
dc.contributor.author | Xiao, YG | en_AU |
dc.date.accessioned | 2021-07-09T04:24:53Z | en_AU |
dc.date.available | 2021-07-09T04:24:53Z | en_AU |
dc.date.issued | 2020-12-01 | en_AU |
dc.date.statistics | 2021-07-05 | en_AU |
dc.description.abstract | Improving electrochemical performance of cathode materials for lithium-ion batteries requires comprehensive understanding of their structural properties which could facilitate or impede the diffusion of lithium during charge-discharge. In order to optimize the structure and improve the electrochemical performance of layered cathode material, the detailed structural evolution as a function of heat treatment temperature in LiNi0.8Co0.1Mn0.1O2 was investigated by in-situ and ex-situ neutron powder diffraction methods. We show that both cycling stability and rate performance of LiNi0.8Co0.1Mn0.1O2 can be improved by performing heat treatment at 400 °C, which is attributed to the optimization of surface structure and the enlargement of c/a ratio. Heat treatment of LiNi0.8Co0.1Mn0.1O2 at higher temperature induces a layered-to-rock-salt structure phase transition accompanied with the precipitation of lithium oxide. A 3D phase diagram, which correlates the high temperature phases and room temperature phases, is constructed. The presentation of comprehensive phase diagrams up to 1000 °C could provide the basis for further research on not only synthesis strategy but also thermal stability in Ni-rich layered cathode materials. © 2020 Elsevier Ltd. | en_AU |
dc.identifier.articlenumber | 105194 | en_AU |
dc.identifier.citation | Huang, Z., Chu, M., Wang, R., Zhu, W., Zhao, W., Wang, C., Zhang, Y., He, L., Chen, J., Deng, S., Mei, L., Kan, W. H., Avdeev, M., Pan, F., & Xiao, Y. (2020). Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing. Nano Energy, 78, 105194. doi:10.1016/j.nanoen.2020.105194 | en_AU |
dc.identifier.issn | 2211-2855 | en_AU |
dc.identifier.journaltitle | Nano Energy | en_AU |
dc.identifier.uri | https://doi.org/10.1016/j.nanoen.2020.105194 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/11044 | en_AU |
dc.identifier.volume | 78 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Elsevier | en_AU |
dc.subject | Neutron diffraction | en_AU |
dc.subject | Phase transformations | en_AU |
dc.subject | Cathodes | en_AU |
dc.subject | Lithium | en_AU |
dc.subject | Nickel | en_AU |
dc.subject | Lithium ion batteries | en_AU |
dc.title | Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: