Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing

dc.contributor.authorHuang, ZYen_AU
dc.contributor.authorChu, MHen_AU
dc.contributor.authorWang, Ren_AU
dc.contributor.authorZhu, WMen_AU
dc.contributor.authorZhao, WGen_AU
dc.contributor.authorWang, CQen_AU
dc.contributor.authorZhang, YJen_AU
dc.contributor.authorHe, LHen_AU
dc.contributor.authorChen, Jen_AU
dc.contributor.authorDeng, SHen_AU
dc.contributor.authorMei, LWen_AU
dc.contributor.authorKan, WHen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorPan, Fen_AU
dc.contributor.authorXiao, YGen_AU
dc.date.accessioned2021-07-09T04:24:53Zen_AU
dc.date.available2021-07-09T04:24:53Zen_AU
dc.date.issued2020-12-01en_AU
dc.date.statistics2021-07-05en_AU
dc.description.abstractImproving electrochemical performance of cathode materials for lithium-ion batteries requires comprehensive understanding of their structural properties which could facilitate or impede the diffusion of lithium during charge-discharge. In order to optimize the structure and improve the electrochemical performance of layered cathode material, the detailed structural evolution as a function of heat treatment temperature in LiNi0.8Co0.1Mn0.1O2 was investigated by in-situ and ex-situ neutron powder diffraction methods. We show that both cycling stability and rate performance of LiNi0.8Co0.1Mn0.1O2 can be improved by performing heat treatment at 400 °C, which is attributed to the optimization of surface structure and the enlargement of c/a ratio. Heat treatment of LiNi0.8Co0.1Mn0.1O2 at higher temperature induces a layered-to-rock-salt structure phase transition accompanied with the precipitation of lithium oxide. A 3D phase diagram, which correlates the high temperature phases and room temperature phases, is constructed. The presentation of comprehensive phase diagrams up to 1000 °C could provide the basis for further research on not only synthesis strategy but also thermal stability in Ni-rich layered cathode materials. © 2020 Elsevier Ltd.en_AU
dc.identifier.articlenumber105194en_AU
dc.identifier.citationHuang, Z., Chu, M., Wang, R., Zhu, W., Zhao, W., Wang, C., Zhang, Y., He, L., Chen, J., Deng, S., Mei, L., Kan, W. H., Avdeev, M., Pan, F., & Xiao, Y. (2020). Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing. Nano Energy, 78, 105194. doi:10.1016/j.nanoen.2020.105194en_AU
dc.identifier.issn2211-2855en_AU
dc.identifier.journaltitleNano Energyen_AU
dc.identifier.urihttps://doi.org/10.1016/j.nanoen.2020.105194en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11044en_AU
dc.identifier.volume78en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectNeutron diffractionen_AU
dc.subjectPhase transformationsen_AU
dc.subjectCathodesen_AU
dc.subjectLithiumen_AU
dc.subjectNickelen_AU
dc.subjectLithium ion batteriesen_AU
dc.titleOptimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processingen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections