On disrupting the Na+-ion/vacancy ordering in P2-type sodium–manganese–nickel oxide cathodes for Na+-ion batteries

dc.contributor.authorGutierrez, Aen_AU
dc.contributor.authorDose, WMen_AU
dc.contributor.authorBorkiewicz, Oen_AU
dc.contributor.authorGuo, Fen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorKim, SJen_AU
dc.contributor.authorFister, TTen_AU
dc.contributor.authorRen, Yen_AU
dc.contributor.authorBareño, Jen_AU
dc.contributor.authorJohnson, CSen_AU
dc.date.accessioned2021-02-03T23:04:17Zen_AU
dc.date.available2021-02-03T23:04:17Zen_AU
dc.date.issued2018-09-06en_AU
dc.date.statistics2021-01-19en_AU
dc.description.abstractAn investigation of the electrochemical and structural properties of layered P2–Na0.62Mn0.75Ni0.25O2 is presented. The effect of changing the Mn/Ni ratio (3:1) from what is found in Na0.67Mn0.67Ni0.33O2 (2:1) and consequently the introduction of a third metal center (Mn3+) was investigated. X-ray powder diffraction (in situ and ex situ) revealed the lack of Na+-ion/vacancy ordering at the relevant sodium contents (x = 0.33, 0.5, and 0.67). Mn3+ in Na0.62Mn0.75Ni0.25O2 introduces defects into the Ni–Mn interplane charge order that in turn disrupts the ordering within the Na-plane. The material underwent P2–O2 and P2–P2′ phase transitions at high (4.2 V) and low (∼1.85 V) voltages, respectively. The material was tested at several different voltage ranges to understand the effect of the phase transitions on the capacity retention. Interestingly, the inclusion of both phase transitions demonstrated comparable cycling performance to when both phase transitions were excluded. Last, excellent rate performance was demonstrated between 4.3 and 1.5 V with a specific capacity of 120 mA h/g delivered at 500 mA/g current density. © 2018 American Chemical Societyen_AU
dc.identifier.citationGutierrez, A., Dose, W. M., Borkiewicz, O., Guo, F., Avdeev, M., Kim, S., Fister, T. T., Ren, Y., Bareño, J., & Johnson, C. S. (2018). On disrupting the Na+-ion/vacancy ordering in P2-type sodium–manganese–nickel oxide cathodes for Na+-ion batteries. Journal of Physical Chemistry C, 122(41) 23251–23260. doi:10.1021/acs.jpcc.8b05537en_AU
dc.identifier.issn1932-7455en_AU
dc.identifier.issue41en_AU
dc.identifier.journaltitleJournal of Physical Chemistry Cen_AU
dc.identifier.pagination23251-23260en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.jpcc.8b05537en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10297en_AU
dc.identifier.volume122en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectSodiumen_AU
dc.subjectCrystal latticesen_AU
dc.subjectTransition elementsen_AU
dc.subjectPhase transformationsen_AU
dc.subjectVacanciesen_AU
dc.subjectX-ray diffractionen_AU
dc.titleOn disrupting the Na+-ion/vacancy ordering in P2-type sodium–manganese–nickel oxide cathodes for Na+-ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections