Enhanced thermoelectric performance and mechanical strength of n-type BiTeSe materials produced via a composite strategy

dc.contributor.authorYang, Gen_AU
dc.contributor.authorSang, Len_AU
dc.contributor.authorMitchell, DRGen_AU
dc.contributor.authorYun, FFen_AU
dc.contributor.authorSee, KWen_AU
dc.contributor.authorAhmed, AJen_AU
dc.contributor.authorSayyar, Sen_AU
dc.contributor.authorBake, Aen_AU
dc.contributor.authorLiu, Pen_AU
dc.contributor.authorChen, Len_AU
dc.contributor.authorYue, ZJen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorWang, XLen_AU
dc.date.accessioned2024-02-27T00:30:10Zen_AU
dc.date.available2024-02-27T00:30:10Zen_AU
dc.date.issued2022-01en_AU
dc.date.statistics2024-02-27en_AU
dc.description.abstractZone-melted Bi2Te2.7Se0.3 (ZM BTS) alloys are typical n-type commercial thermoelectric (TE) materials and are utilized for refrigeration and power generation near room temperature. They usually suffer from poor mechanical performance, as well as having a low figure of merit (ZT). In this work, we report an effective composite strategy to improve both the TE and mechanical performance of n-type BTS materials by incorporating carbon microfibers. The introduction of carbon microfibers in BTS effectively reduces the lattice thermal conductivity due to phonon scattering at multi-scale boundaries and due to the large interfacial thermal resistance arising from phonon mismatch between the constituent phases. Simultaneously, it also gives rise to an enhancement of the electrical conductivity, which originates from the increased carrier density without significant limitation on its weighted mobility. Consequently, a high peak ZT of 1.1 at 400 K and an average ZTave value of 0.95 are achieved in the temperature range 300 ~ 550 K, yielding a calculated efficiency of η = 9%. Moreover, the BTS/carbon microfiber composites show superior compressive strength compared to a commercial ZM BTS sample. This improved strength is highly desirable for real-world TE applications. Our results demonstrate a novel way to produce high-performance TE materials, in which interfaces with large thermal resistance are used to achieve low thermal conductivity without significantly degrading the electrical properties of the materials. © 2021 Elsevier B.V.en_AU
dc.description.sponsorshipThis work was partially supported by the Australian Research Council (ARC) through an ARC Professorial Future Fellowship project (FT130100778, XLW), the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET, CE170100039), and a Linkage Infrastructure, Equipment and Facilities (LIEF) Grant (LE120100069, XLW).This research used the JEOL JEM-ARM200F funded by the Australian Research Council (ARC) through a LIEF grant (LE120100104) and located at the UOW Electron Microscopy Centre. The authors acknowledge the Australian National Fabrication Facility (ANFF)—Materials Node.en_AU
dc.identifier.articlenumber131205en_AU
dc.identifier.citationYang, G., Sang, L., Mitchell, D. R. G., Fei Yun, F., Wai See, K., Jumlat Ahmed, A., Sayyar, S., Bake, A., Liu, P., Chen, L., Yue, Z., Cortie, D., & Wang, X. (2022). Enhanced thermoelectric performance and mechanical strength of n-type BiTeSe materials produced via a composite strategy. Chemical Engineering Journal, 428, 131205. doi:10.1016/j.cej.2021.131205en_AU
dc.identifier.issn1385-8947en_AU
dc.identifier.journaltitleChemical Engineering Journalen_AU
dc.identifier.pagination131205-en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.cej.2021.131205en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15438en_AU
dc.identifier.volume428en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectAlloysen_AU
dc.subjectSeleniumen_AU
dc.subjectBismuthen_AU
dc.subjectTelluriumen_AU
dc.subjectThermal conductivityen_AU
dc.subjectScatteringen_AU
dc.subjectAmbient temperatureen_AU
dc.subjectPhononsen_AU
dc.subjectMaterialsen_AU
dc.titleEnhanced thermoelectric performance and mechanical strength of n-type BiTeSe materials produced via a composite strategyen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections