Synthesis, structure and geometrically frustrated magnetism of the layered oxide-stannide compounds Fe(Fe3−xMnx)Si2Sn7O16

dc.contributor.authorAllison, MCen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorSchmid, Sen_AU
dc.contributor.authorLiu, Sen_AU
dc.contributor.authorSöhnel, Ten_AU
dc.contributor.authorLing, CDen_AU
dc.date.accessioned2021-02-03T23:20:20Zen_AU
dc.date.available2021-02-03T23:20:20Zen_AU
dc.date.issued2016-05-23en_AU
dc.date.statistics2021-01-19en_AU
dc.description.abstractFe4Si2Sn7O16 has a unique crystal structure that contains alternating layers of Fe2+ ions octahedrally coordinated by O (oxide layer) and Sn (stannide layer), bridged by SiO4 tetrahedra. The formula can be written as FeFe3Si2Sn7O16 to emphasise the distinction between the layers. Here, we report the changes in structure and properties as iron is selectively replaced by manganese in the oxide layer. Solid-state synthesis was used to produce polycrystalline samples of Fe(Fe3−xMnx)Si2Sn7O16 for x ≤ 2.55, the structures of which were characterised using high-resolution synchrotron X-ray and neutron powder diffraction. Single-crystal samples were also grown at x = 0.35, 0.95, 2.60 and characterised by single crystal X-ray diffraction. We show that manganese is doped exclusively into the oxide layer, and that this layer contains exclusively magnetically active high-spin M2+ transition metal cations; while the stannide layer only accommodates non-magnetic low-spin Fe2+. All samples show clear evidence of geometrically frustrated magnetism, which we associate with the fact that the topology of the high-spin M2+ ions in the oxide layer describes a perfect kagomé lattice. Despite this frustration, the x = 0 and x = 2.55 samples undergo long-range antiferromagnetic ordering transitions at 3.0 K and 2.5 K, respectively. © The Royal Society of Chemistry 2016 - CC BY 3.0en_AU
dc.identifier.citationAllison, M. C., Avdeev, M., Schmid, S., Liu, S., Söhnel, T., & Ling, C. D. (2016). Synthesis, structure and geometrically frustrated magnetism of the layered oxide-stannide compounds Fe(Fe3−xMnx)Si2Sn7O16. Dalton Transactions, 45(23), 9689-9694. doi:10.1039/C6DT01074Aen_AU
dc.identifier.issn1477-9234en_AU
dc.identifier.issue23en_AU
dc.identifier.journaltitleDalton Transactionsen_AU
dc.identifier.pagination9689-9694en_AU
dc.identifier.urihttps://doi.org/10.1039/C6DT01074Aen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10299en_AU
dc.identifier.volume45en_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectCrystal structureen_AU
dc.subjectPolycrystalsen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectOxidesen_AU
dc.subjectMagnetismen_AU
dc.subjectManganeseen_AU
dc.subjectIronen_AU
dc.subjectAntiferromagnetismen_AU
dc.subjectSpinen_AU
dc.titleSynthesis, structure and geometrically frustrated magnetism of the layered oxide-stannide compounds Fe(Fe3−xMnx)Si2Sn7O16en_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c6dt01074a.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections