Impurity tolerance of unsaturated Ni-N‑C active sites for practical electrochemical CO2 reduction

dc.contributor.authorLeverett, Jen_AU
dc.contributor.authorYuwono, JAen_AU
dc.contributor.authorKumar, Pen_AU
dc.contributor.authorTran-Phu, Ten_AU
dc.contributor.authorQu, JTen_AU
dc.contributor.authorCairney, JMen_AU
dc.contributor.authorWang, Xen_AU
dc.contributor.authorSimonov, ANen_AU
dc.contributor.authorHocking, RKen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorDai, Len_AU
dc.contributor.authorDaiyan, Ren_AU
dc.contributor.authorAmal, Ren_AU
dc.date.accessioned2025-04-18T02:38:40Zen_AU
dc.date.available2025-04-18T02:38:40Zen_AU
dc.date.issued2022-02-09en_AU
dc.date.statistics2025-04-09en_AU
dc.description.abstractDemonstrating the potential of the electrochemical carbon dioxide reduction reaction (CO2RR) in industrially relevant conditions is a promising route for achieving net-zero emissions through decarbonization. This requires a catalyst system that displays not only high activity and stability but also the capacity to deliver a consistent performance in the presence of waste stream impurities. To explore these opportunities, we investigate the role that the Ni coordination structure plays on the impurity tolerance of highly active single-atom catalysts (SACs) during CO2RR. The as-synthesized materials are highly active for CO2RR to CO, achieving a current density of 470 mA cm-2 and a CO selectivity of 99% in a CO2 electrolyzer. We demonstrate, through high-temperature pyrolysis, that a higher concentration of “unsaturated” Ni-N4-x-Cx sites significantly improves the tolerance to NOx, SOx, volatile organic compounds, and SCN- impurities in aqueous electrolyte, paving the way for SACs capable of CO2RR in industrial conditions. © 2022 American Chemical Society.en_AU
dc.identifier.citationLeverett, J., Yuwono, J. A., Kumar, P., Tran-Phu, T., Qu, J., Cairney, J., Wang, X., Simonov, A. N., Hocking, R. K., Johannessen, B., Dai, L., Daiyan, R., & Amal, R. (2022). Impurity Tolerance of Unsaturated Ni-N-C Active Sites for Practical Electrochemical CO2 Reduction. ACS Energy Letters, 7(3), 920-928. doi:10.1021/acsenergylett.1c02711en_AU
dc.identifier.issn2380-8195en_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitleACS Energy Lettersen_AU
dc.identifier.pagination920-928en_AU
dc.identifier.urihttps://doi.org/10.1021/acsenergylett.1c02711en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16151en_AU
dc.identifier.volume7en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Society (ACS)en_AU
dc.subjectNitrogenen_AU
dc.subjectCarbon dioxideen_AU
dc.subjectNickelen_AU
dc.subjectElectrochemistryen_AU
dc.subjectAdsorptionen_AU
dc.subjectCatalystsen_AU
dc.subjectPyrolysisen_AU
dc.subjectTemperature rangeen_AU
dc.titleImpurity tolerance of unsaturated Ni-N‑C active sites for practical electrochemical CO2 reductionen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections