High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms
dc.contributor.author | He, B | en_AU |
dc.contributor.author | Chi, ST | en_AU |
dc.contributor.author | Ye, AJ | en_AU |
dc.contributor.author | Mi, PH | en_AU |
dc.contributor.author | Zhang, LW | en_AU |
dc.contributor.author | Pu, B | en_AU |
dc.contributor.author | Zou, Z | en_AU |
dc.contributor.author | Ran, YB | en_AU |
dc.contributor.author | Zhao, Q | en_AU |
dc.contributor.author | Wang, D | en_AU |
dc.contributor.author | Zhang, WQ | en_AU |
dc.contributor.author | Zhao, JT | en_AU |
dc.contributor.author | Adams, S | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Shi, S | en_AU |
dc.date.accessioned | 2021-06-29T21:11:29Z | en_AU |
dc.date.available | 2021-06-29T21:11:29Z | en_AU |
dc.date.issued | 2020-05-21 | en_AU |
dc.date.statistics | 2021-06-28 | en_AU |
dc.description.abstract | The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB completing automatic calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical both geometric analysis and the bond valence site energy method. A chain of images are then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community. © 2020, The Author(s) | en_AU |
dc.identifier.articlenumber | 151 | en_AU |
dc.identifier.citation | He, B., Chi, S., Ye, A., Mi, P., Zhang, L., Pu, B., Zou, Z., Ran, Y., Zhao, Q., Wang, D., Zhang, W., Zhao, J., Adams, S., Avdeev, M., & Shi, S. (2020). High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Scientific Data, 7, 1-14, 151. doi:10.1038/s41597-020-0474-y | en_AU |
dc.identifier.issn | 2052-4463 | en_AU |
dc.identifier.journaltitle | Scientific Data | en_AU |
dc.identifier.pagination | 1-14 | en_AU |
dc.identifier.uri | https://doi.org/10.1038/s41597-020-0474-y | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/dspace/handle/10238/10954 | en_AU |
dc.identifier.volume | 7 | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Springer Nature | en_AU |
dc.subject | Radioisotope batteries | en_AU |
dc.subject | Electrolytes | en_AU |
dc.subject | Computerized simulation | en_AU |
dc.subject | Solid electrolytes | en_AU |
dc.subject | Crystal structure | en_AU |
dc.subject | Monte Carlo Method | en_AU |
dc.title | High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms | en_AU |
dc.type | Journal Article | en_AU |