Soil production and transport on postorogenic desert hillslopes quantified with 10Be and 26Al

dc.contributor.authorStruck, Men_AU
dc.contributor.authorJansen, JDen_AU
dc.contributor.authorFujioka, Ten_AU
dc.contributor.authorCodilean, ATen_AU
dc.contributor.authorFink, Den_AU
dc.contributor.authorEgholm, DLen_AU
dc.contributor.authorFülöp, RHen_AU
dc.contributor.authorWilcken, KMen_AU
dc.contributor.authorKotevski, Sen_AU
dc.date.accessioned2021-12-20T23:28:44Zen_AU
dc.date.available2021-12-20T23:28:44Zen_AU
dc.date.issued2018-01-02en_AU
dc.date.statistics2021-11-16en_AU
dc.description.abstractHillslopes stand at the top of the geomorphic conveyor belt that produces and transports mass throughout landscapes. Quantification of the tempo of hillslope evolution is key to identifying primary sediment production and understanding how surface processes shape topography. We measured cosmogenic 10Be and 26Al on three desert hillslopes in postorogenic central Australia and quantified their soil dynamics and evolution. We found that hillslope morphology is governed by lithological factors, and differing nuclide abundances reflect the main sediment transport processes. Slope wash is widespread, and shrink-swell soil processes drive downslope creep and upward migration of gravels detached from underlying bedrock. We applied Monte Carlo–based inversion modeling to reconstruct soil production and the exhumation histories of stony mantle gravels. Underlying silty soils derive from eolian dust inputs dating to at least 0.2 Ma and possibly more than 1 Ma, in line with intensified aridity. Exposed bedrock erodes at ∼0.2–7 m/m.y., and under soil, it erodes at maximum rates of <0.1 m/m.y. up to 10 m/m.y. Accordingly, particles spend 2–6 m.y. or more in the upper 0.6 m of the bedrock column and an additional ∼0.2–2 m.y. or more within hillslope soils. Such long periods near the surface result in surface particles acquiring inherently low 26Al/10Be ratios. Bedrock erodibility underpins regional variations in erosion rate, and the slow tempo of hillslope evolution is largely independent of base level. This suggests a distinctive top-down evolution among postorogenic hillslopes set by authigenic rates of sediment production, rather than by fluvial incision as in tectonically active settings. © 2021 Geological Society of Americaen_AU
dc.identifier.citationStruck, M., Jansen, J. D., Fujioka, T., Codilean, A. T., Fink, D., Egholm, D. L., Fülöp, R.-H., Wilcken, K. M., & Kotevski, S. (2018). Soil production and transport on postorogenic desert hillslopes quantified with 10Be and 26Al. GSA Bulletin, 130(5-6), 1017–1040. doi:10.1130/B31767.1en_AU
dc.identifier.issn1943-2674en_AU
dc.identifier.issue5-6en_AU
dc.identifier.journaltitleGSA Bulletinen_AU
dc.identifier.pagination1017-1040en_AU
dc.identifier.urihttps://doi.org/10.1130/B31767.1en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12597en_AU
dc.identifier.volume130en_AU
dc.language.isoenen_AU
dc.publisherGeoScienceWorlden_AU
dc.subjectAustraliaen_AU
dc.subjectMonte Carlo Methoden_AU
dc.subjectAluminium 26en_AU
dc.subjectBeryllium 10en_AU
dc.subjectIsotopesen_AU
dc.subjectGeomorphologyen_AU
dc.subjectErosionen_AU
dc.subjectGrain sizeen_AU
dc.subjectArid landsen_AU
dc.subjectSedimentsen_AU
dc.subjectSoilsen_AU
dc.subjectWeatheringen_AU
dc.subjectEnvironmental transporten_AU
dc.subjectTopographyen_AU
dc.subjectMorphologyen_AU
dc.subjectEvolutionen_AU
dc.titleSoil production and transport on postorogenic desert hillslopes quantified with 10Be and 26Alen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections