Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses
| dc.contributor.author | Hou, JW | en_AU |
| dc.contributor.author | Chen, P | en_AU |
| dc.contributor.author | Shukla, A | en_AU |
| dc.contributor.author | Krajnc, A | en_AU |
| dc.contributor.author | Wang, TiS | en_AU |
| dc.contributor.author | Li, XM | en_AU |
| dc.contributor.author | Doasa, R | en_AU |
| dc.contributor.author | Tizei, LHG | en_AU |
| dc.contributor.author | Chan, B | en_AU |
| dc.contributor.author | Johnstone, D | en_AU |
| dc.contributor.author | Lin, R | en_AU |
| dc.contributor.author | Schülli, TU | en_AU |
| dc.contributor.author | Martens, I | en_AU |
| dc.contributor.author | Appadoo, DRT | en_AU |
| dc.contributor.author | Ari, MS | en_AU |
| dc.contributor.author | Wang, ZL | en_AU |
| dc.contributor.author | Wei, T | en_AU |
| dc.contributor.author | Lo, SC | en_AU |
| dc.contributor.author | Lu, MY | en_AU |
| dc.contributor.author | Li, SC | en_AU |
| dc.contributor.author | Namdas, EB | en_AU |
| dc.contributor.author | Mali, Gregor | en_AU |
| dc.contributor.author | Cheetham, AK | en_AU |
| dc.contributor.author | Collins, SM | en_AU |
| dc.contributor.author | Chen, V | en_AU |
| dc.contributor.author | Wang, LZ | en_AU |
| dc.contributor.author | Bennett, TD | en_AU |
| dc.date.accessioned | 2025-10-27T03:05:11Z | en_AU |
| dc.date.available | 2025-10-27T03:05:11Z | en_AU |
| dc.date.issued | 2021-10-28 | en_AU |
| dc.date.statistics | 2025-10-27 | en_AU |
| dc.description.abstract | Lead halide perovskite (LHP) semiconductors show exceptional optoelectronic properties. Barriers for their applications, however, lie in their polymorphism, instability to polar solvents, phase segregation, and susceptibility to the leaching of lead ions. We report a family of scalable composites fabricated through liquid-phase sintering of LHPs and metal-organic framework glasses. The glass acts as a matrix for LHPs, effectively stabilizing nonequilibrium perovskite phases through interfacial interactions. These interactions also passivate LHP surface defects and impart bright, narrow-band photoluminescence with a wide gamut for creating white light-emitting diodes (LEDs). The processable composites show high stability against immersion in water and organic solvents as well as exposure to heat, light, air, and ambient humidity. These properties, together with their lead self-sequestration capability, can enable breakthrough applications for LHPs. © 2025 American Association for the Advancement of Science. | en_AU |
| dc.description.sponsorship | This work was supported by the Australian Research Council (DE190100803, DE210100930, DP180103874, DE190101152, DP200101900, and FL190100139); Department of Industry, Innovation and Science (AISRF53765); University of Queensland (UQECR2057677); Australian Centre for Advanced Photovoltaics fellowship and Australian Renewable Energy Agency; Henry Royce Institute for a summer undergraduate internship; National Natural Science Foundation of China (51772326); RIKEN Information Systems and Cybersecurity (Project Q20266); Slovenian Research Agency (research core funding P1-0021); Ras al Khaimah Center for Advanced Materials; Royal Society and Leverhulme Trust for a University Research Fellowship (UF150021) and Philip Leverhulme Prize (2019); European Union’s Horizon 2020 research and innovation program (823717–ESTEEM3); and the National Agency for Research future investment TEMPOS-CHROMATEM (ANR-10-EQPX-50). Part of this research was undertaken on the THz/Far-IR, SAXS, and PD beamlines at the Australian Synchrotron, part of ANSTO (M15988 and M15433). The authors acknowledge the Centre for Microscopy and Microanalysis and the Australian National Fabrication Facility, the University of Queensland; the Leeds EPSRC Nanoscience and Nanotechnology Facility (LENNF); ESRF / ID31 beamline; and the Diamond Light Source for access and support in the use of the electron Physical Sciences Imaging Centre (MG21980 and MG25140). | en_AU |
| dc.format.medium | Print-Electronic | en_AU |
| dc.identifier.citation | Hou, J., Chen, P., Shukla, A., Krajnc, A., Wang, T., Li, X., Doasa, R., Tizei, L. H. G., Chan, B., Johnstone, D. N., Lin, R., Schülli, T. U., Martens, I., Appadoo, D., Ari, M. S., Wang, Z., Wei, T., Lo, S.-C., Lu, M., Li, S., Namdas, E. B., Mali, G., Cheetham, A. K., Collins, S. M., Chen, V., Wang, L., & Bennett, T. D. (2021). Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science, 374(6567), 621–625. doi:10.1126/science.abf4460 | en_AU |
| dc.identifier.issn | 0036-8075 | en_AU |
| dc.identifier.issn | 1095-9203 | en_AU |
| dc.identifier.issue | 6567 | en_AU |
| dc.identifier.journaltitle | Science | en_AU |
| dc.identifier.pagination | 621-625 | en_AU |
| dc.identifier.uri | https://doi.org/10.1126/science.abf4460 | en_AU |
| dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/16666 | en_AU |
| dc.identifier.volume | 374 | en_AU |
| dc.language | English | en_AU |
| dc.language.iso | en | en_AU |
| dc.publisher | American Association for the Advancement of Science | en_AU |
| dc.subject | Lead halides | en_AU |
| dc.subject | Perovskites | en_AU |
| dc.subject | Glass | en_AU |
| dc.subject | Photoluminescence | en_AU |
| dc.subject | Cesium | en_AU |
| dc.subject | Lead iodides | en_AU |
| dc.subject | Lasers | en_AU |
| dc.subject | Excitation | en_AU |
| dc.subject | Water | en_AU |
| dc.subject | Light emitting diodes | en_AU |
| dc.subject | Thermodynamics | en_AU |
| dc.title | Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses | en_AU |
| dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1