Two positive effects with one arrow: modulating crystal and interfacial decoration towards high-potential cathode material

dc.contributor.authorGu, XXen_AU
dc.contributor.authorGao, XWen_AU
dc.contributor.authorYang, DRen_AU
dc.contributor.authorGu, QFen_AU
dc.contributor.authorSong, Yen_AU
dc.contributor.authorChen, Hen_AU
dc.contributor.authorRen, TZen_AU
dc.contributor.authorLuo, WBen_AU
dc.date.accessioned2025-07-04T05:00:06Zen_AU
dc.date.available2025-07-04T05:00:06Zen_AU
dc.date.issued2024-05en_AU
dc.date.statistics2025-07-04en_AU
dc.description.abstractAs the primary suppliers of cyclable sodium ions, O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries. To advance the development of high-energy sodium-ion batteries, it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior. The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na+ ion diffusion by introducing heterogeneous chemical bonding. Inspired by the abundant configuration of extra nuclear electrons and large ion radius, we employed trace amounts of tungsten in this study. The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen. Additionally, the formation of a Na2WO4 coating on the material surface can improve the interfacial stability and interface ions diffusion. It demonstrates an initial Coulombic efficiency (ICE) of 94.6% along with 168.5 mA h g−1 discharge capacity within the voltage range of 1.9–4.35 V. These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na2WO4 coating on cathode materials. © 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Pressen_AU
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (Grant No. 52272194), LiaoNing Revitalization Talents Program (Grant No. XLYC2007155).en_AU
dc.identifier.citationGu, X., Gao, X.-W., Yang, D., Gu, Q., Song, Y., Chen, H., Ren, T., & Luo, W.-B. (2024). Two positive effects with one arrow: Modulating crystal and interfacial decoration towards high-potential cathode material. Journal of Energy Chemistry, 92, 216-223. doi:10.1016/j.jechem.2024.01.053en_AU
dc.identifier.issn2095-4956en_AU
dc.identifier.journaltitleJournal of Energy Chemistryen_AU
dc.identifier.pagination216-223en_AU
dc.identifier.urihttps://doi.org/10.1016/j.jechem.2024.01.053en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16271en_AU
dc.identifier.volume92en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectSodiumen_AU
dc.subjectEnergy storageen_AU
dc.subjectFlywheel Energy Storageen_AU
dc.subjectManganeseen_AU
dc.subjectOxidesen_AU
dc.subjectElectrodesen_AU
dc.subjectCathodesen_AU
dc.subjectEnergy densityen_AU
dc.subjectKineticsen_AU
dc.subjectCrystal structureen_AU
dc.subjectTrace amountsen_AU
dc.subjectOxygenen_AU
dc.subjectRedox reactionsen_AU
dc.titleTwo positive effects with one arrow: modulating crystal and interfacial decoration towards high-potential cathode materialen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections