Direct measurement of the intrinsic sharpness of magnetic interfaces formed by chemical disorder using a He+ beam

dc.contributor.authorCauser, GLen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorZhu, Hen_AU
dc.contributor.authorIonescu, Men_AU
dc.contributor.authorMankey, GJen_AU
dc.contributor.authorWang, XLen_AU
dc.contributor.authorKlose, Fen_AU
dc.date.accessioned2025-01-23T03:13:58Zen_AU
dc.date.available2025-01-23T03:13:58Zen_AU
dc.date.issued2018-04-27en_AU
dc.date.statistics2025-01-22en_AU
dc.description.abstractUsing ion beams to locally modify material properties and subsequently drive magnetic phase transitions is rapidly gaining momentum as the technique of choice for the fabrication of magnetic nanoelements. This is because the method provides the capability to engineer in three dimensions on the nanometer length scale. This will be an important consideration for several emerging magnetic technologies (e.g., spintronic devices and racetrack and random-access memories) where device functionality will hinge on the spatial definition of the incorporated magnetic nanoelements. In this work, the fundamental sharpness of a magnetic interface formed by nanomachining FePt3 films using He+ irradiation is investigated. Through careful selection of the irradiating ion energy and fluence, room-temperature ferromagnetism is locally induced into a fractional volume of a paramagnetic (PM) FePt3 film by modifying the chemical order parameter. A combination of transmission electron microscopy, magnetometry, and polarized neutron reflectometry measurements demonstrates that the interface over which the PM-to-ferromagnetic modulation occurs in this model system is confined to a few atomic monolayers only, while the structural boundary transition is less well-defined. Using complementary density functional theory, the mechanism for the ion-beam-induced magnetic transition is elucidated and shown to be caused by an intermixing of Fe and Pt atoms in antisite defects above a threshold density. © 2018 American Chemical Society.en_AU
dc.description.sponsorshipThis work was supported by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) for ANSTO facilities where ion irradiation, TEM, magnetometry, and PNR were conducted under proposals 5062, 5247, 5808, and 10850. G.L.C. acknowledges support from the Australian Government Research Training Program Award (grant no. 3421092) and the Australian Institute of Nuclear Science and Engineering (AINSE) Postgraduate Research Award (grant no. ALNSTU12030).en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationCauser, G. L., Cortie, D. L., Zhu, H., Ionescu, M., Mankey, G. J., Wang, X. L., & Klose, F. (2018). Direct measurement of the intrinsic sharpness of magnetic interfaces formed by chemical disorder using a He+ beam. ACS Applied Materials & Interfaces, 10(18), 16216-16224 doi:10.1021/acsami.8b03197en_AU
dc.identifier.issn1944-8244en_AU
dc.identifier.issn1944-8252en_AU
dc.identifier.issue18en_AU
dc.identifier.journaltitleACS Applied Materials & Interfacesen_AU
dc.identifier.pagination16216-16224en_AU
dc.identifier.urihttps://doi.org/10.1021/acsami.8b03197en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15949en_AU
dc.identifier.volume10en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectHeliumen_AU
dc.subjectMagnetismen_AU
dc.subjectIon beamsen_AU
dc.subjectFilmsen_AU
dc.subjectParamagnetismen_AU
dc.subjectFerromagnetismen_AU
dc.subjectNeutronsen_AU
dc.subjectIonsen_AU
dc.subjectLayersen_AU
dc.subjectMagnetic propertiesen_AU
dc.subjectPlatinumen_AU
dc.subjectDensity functional methoden_AU
dc.titleDirect measurement of the intrinsic sharpness of magnetic interfaces formed by chemical disorder using a He+ beamen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections