Uncovering the potential of M1‐site‐activated NASICON cathodes for Zn‐Ion batteries

dc.contributor.authorHu, Pen_AU
dc.contributor.authorZou, Zen_AU
dc.contributor.authorSun, XWen_AU
dc.contributor.authorWang, Den_AU
dc.contributor.authorMa, Jen_AU
dc.contributor.authorKong, QYen_AU
dc.contributor.authorXiao, DDen_AU
dc.contributor.authorGu, Len_AU
dc.contributor.authorZhou, XHen_AU
dc.contributor.authorZhao, JWen_AU
dc.contributor.authorDong, SMen_AU
dc.contributor.authorHe, Ben_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorShi, Sen_AU
dc.contributor.authorCui, GLen_AU
dc.contributor.authorChen, LQen_AU
dc.date.accessioned2021-02-03T22:57:50Zen_AU
dc.date.available2021-02-03T22:57:50Zen_AU
dc.date.issued2020-02-20en_AU
dc.date.statistics2021-01-18en_AU
dc.description.abstractThere is a long‐standing consciousness that the rhombohedral NASICON‐type compounds as promising cathodes for Li+/Na+ batteries should have inactive M1(6b) sites with ion (de)intercalation occurring only in the M2 (18e) sites. Of particular significance is that M1 sites active for charge/discharge are commonly considered undesirable because the ion diffusion tends to be disrupted by the irregular occupation of channels, which accelerates the deterioration of battery. However, it is found that the structural stability can be substantially improved by the mixed occupation of Na+/Zn2+ at both M1 and M2 when using NaV2(PO4)3 (NVP) as a cathode for Zn‐ion batteries. The results of atomic‐scale scanning transmission electron microscopy, analysis of ab initio molecular dynamics simulations, and an accurate bond‐valence‐based structural model reveal that the improvement is due to the facile migration of Zn2+ in NVP, which is enabled by a concerted Na+/Zn2+ transfer mechanism. In addition, significant improvement of the electronic conductivity and mechanical properties is achieved in Zn2+‐intercalated ZnNaV2(PO4)3 in comparison with those of Na3V2(PO4)3. This work not only provides in‐depth insight into Zn2+ intercalation and dynamics in NVP unlocked by activating the M1 sites, but also opens a new route toward design of improved NASICON cathodes. © 1999-2021 John Wiley & Sons, Inc.en_AU
dc.identifier.articlenumber1907526en_AU
dc.identifier.citationHu, P., Zou, Z., Sun, X., Wang, D., Ma, J., Kong, Q., Xiao, D., Gu, L., Zhou, X., Zhao, J., Dong, S., He, B., Avdeev, M., Shi, S., Cui, G., & Chen, L. (2020). Uncovering the potential of M1‐site‐activated NASICON cathodes for Zn‐Ion batteries. Advanced Materials, 32(14), 1907526. doi:10.1002/adma.201907526en_AU
dc.identifier.issn1521-4095en_AU
dc.identifier.issue4en_AU
dc.identifier.journaltitleAdvanced Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/adma.201907526en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10295en_AU
dc.identifier.volume32en_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectCathodesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectDiffusionen_AU
dc.subjectTransmission electron microscopyen_AU
dc.subjectMechanical propertiesen_AU
dc.subjectIonsen_AU
dc.titleUncovering the potential of M1‐site‐activated NASICON cathodes for Zn‐Ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections