A niobium oxide with shear structure and planar defects for high-power lithium ion batteries

dc.contributor.authorLi, TTen_AU
dc.contributor.authorNam, Gen_AU
dc.contributor.authorLiu, KTen_AU
dc.contributor.authorWang, JHen_AU
dc.contributor.authorZhao, Ben_AU
dc.contributor.authorDing, Yen_AU
dc.contributor.authorSoule, Len_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorLuo, Zen_AU
dc.contributor.authorZhang, WLen_AU
dc.contributor.authorYuan, Ten_AU
dc.contributor.authorJing, PPen_AU
dc.contributor.authorKim, MGen_AU
dc.contributor.authorSong, YYen_AU
dc.contributor.authorLiu, MLen_AU
dc.date.accessioned2021-12-20T23:53:43Zen_AU
dc.date.available2021-12-20T23:53:43Zen_AU
dc.date.issued2021-11-16en_AU
dc.date.statistics2021-11-23en_AU
dc.description.abstractThe development of anode materials with high-rate capability is critical to high-power lithium batteries. T-Nb2O5 has been widely reported to exhibit pseudocapacitive behavior and fast lithium storage capability. However, the other polymorphs of Nb2O5 prepared at higher temperatures have the potential to achieve even higher specific capacity and tap density than T-Nb2O5, offering higher volumetric power and energy density. Here, micrometer-sized H-Nb2O5 with rich Wadsley planar defects (denoted as d-H-Nb2O5) is designed for fast lithium storage. The performance of H-Nb2O5 with local rearrangements of [NbO6] octahedra blocks surpasses that of T-Nb2O5 in terms of specific capacity, rate capability, and stability. A wide range variation in valence of niobium ions upon lithiation was observed for defective H-Nb2O5 via operando X-ray absorption spectroscopy. Operando extended X-ray absorption fine structure and ex-situ Raman spectroscopy reveals a large and reversible distortion of the structure in the two-phase region. Computation and ex-situ X-ray diffraction analysis reveals that the shear structure expands along major lithium diffusion pathways and contracts in the direction perpendicular to the shear plane. Planar defects relieve strain through perpendicular arrangements of blocks, minimizing volume change and enhancing structural stability. In addition, strong Li adsorption on planar defects enlarges intercalation capacity. Different from nanostructure engineering, our strategy to modify the planar defects in the bulk phase can effectively improve the intrinsic property. The findings in this work offer new insights into designing fast Li-ion storage materials in micrometer sizes through defect engineering, and the strategy is applicable to the material discovery for other energy-related applications. © Royal Society of Chemistry 2021en_AU
dc.identifier.citationLi, T., Nam, G., Liu, K., Wang, J.-H., Zhao, B., Ding, Y., Soule, L., Avdeev, M., Luo, Z., Zhang, W., Yuan, T., Jing, P., Kim, M. G., Song, Y.-Y., & Liu, M. (2021). A niobium oxide with shear structure and planar defects for high-power lithium ion batteries. Energy & Environmental Science, 15(1), 254-264. doi:10.1039/D1EE02664Jen_AU
dc.identifier.issn1754-5706en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleEnergy & Environmental Scienceen_AU
dc.identifier.pagination254-264en_AU
dc.identifier.urihttps://doi.org/10.1039/D1EE02664Jen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12599en_AU
dc.identifier.volume15en_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectAnodesen_AU
dc.subjectRaman spectroscopyen_AU
dc.subjectX-ray spectroscopyen_AU
dc.subjectAbsorptionen_AU
dc.subjectX-ray diffractionen_AU
dc.titleA niobium oxide with shear structure and planar defects for high-power lithium ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections