The effect of applied stress on the high-temperature creep behaviour and microstructure of NiMoCr Hastelloy-N® alloy

dc.contributor.authorZhu, HLen_AU
dc.contributor.authorMuránsky, Oen_AU
dc.contributor.authorWei, Ten_AU
dc.contributor.authorDavis, Jen_AU
dc.contributor.authorBudzakoska-Testone, Een_AU
dc.contributor.authorHuang, HFen_AU
dc.contributor.authorDrew, Men_AU
dc.date.accessioned2023-04-20T06:50:10Zen_AU
dc.date.available2023-04-20T06:50:10Zen_AU
dc.date.issued2021-05en_AU
dc.date.statistics2023-01-12en_AU
dc.description.abstractThe high-temperature creep behaviour and microstructural evolution of Hastelloy-N® was investigated using miniaturised creep samples tested under vacuum at 973 K (700 °C) and stresses of 100 MPa and 165 MPa. The higher applied stress reduced the creep life of the alloy sevenfold, and the creep mechanism at 165 MPa was predominately dislocation-creep while the creep mechanism at 100 MPa was a combination of dislocation creep, diffusion creep and grain boundary sliding. The post-creep microstructure examination using Electron Back-Scatter Diffraction (EBSD) technique showed significantly larger number of Low-Angle Grain Boundaries (LAGBs) and Geometrically-Necessary Dislocations (GNDs) formed during creep at 165 MPa than at 100 MPa. On the other hand, the microstructure of the sample tested at 100 MPa revealed more pronounced precipitation of secondary carbides along High-Angle Grain Boundaries (HAGBs) due to the longer exposure to high temperature. The precipitation of secondary carbides along grain boundaries resulted in grain boundary embrittlement and the promotion of intergranular cracking, which then resulted in low strain-to-failure in the low-stress creep test sample. In addition, it is shown that the prolonged exposure to the elevated temperature lead to Cr depletion from the matrix, reducing solid solution strengthening during creep. © 2021 Acta Materialia Inc. Published by Elsevier B.V.en_AU
dc.description.sponsorshipThis research project has been funded internally by ANSTO as a part of Nuclear Fuel Cycle research theme.en_AU
dc.identifier.articlenumber101069en_AU
dc.identifier.citationZhu, H., Muránsky, O., Wei, T., Davis, J., Budzakoska-Testone, E., Huang, H., & Drew, M. (2021). The effect of applied stress on the high-temperature creep behaviour and microstructure of NiMoCr Hastelloy-N® alloy. Materialia, 16, 101069. doi:10.1016/j.mtla.2021.101069en_AU
dc.identifier.issn2589-1529en_AU
dc.identifier.journaltitleMaterialiaen_AU
dc.identifier.urihttps://doi.org/10.1016/j.mtla.2021.101069en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14912en_AU
dc.identifier.volume16en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectStressesen_AU
dc.subjectAlloysen_AU
dc.subjectMicrostructureen_AU
dc.subjectCreepen_AU
dc.subjectDislocationsen_AU
dc.subjectTemperature range 0400-1000 Ken_AU
dc.titleThe effect of applied stress on the high-temperature creep behaviour and microstructure of NiMoCr Hastelloy-N® alloyen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections