Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films

dc.contributor.authorWang, ZCen_AU
dc.contributor.authorChen, Len_AU
dc.contributor.authorLi, SSen_AU
dc.contributor.authorYing, JSen_AU
dc.contributor.authorTang, Fen_AU
dc.contributor.authorGao, GYen_AU
dc.contributor.authorFang, Yen_AU
dc.contributor.authorZhao, WYen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorWang, XLen_AU
dc.contributor.authorZheng, RKen_AU
dc.date.accessioned2024-02-26T23:49:52Zen_AU
dc.date.available2024-02-26T23:49:52Zen_AU
dc.date.issued2021-12-01en_AU
dc.date.statistics2024-02-27en_AU
dc.description.abstractLinear magnetoresistance (LMR) is a special case of a magnetic-field induced resistivity response, which has been reported in highly disordered semiconductor systems and in topological materials. In this work, we observe LMR effect in half-metallic perovskite Sr2CrMoO6 thin films, of which the maximum MR value exceeds +1600% at 2 K and 14 T. It is an unusual behavior in ferrimagnetic double perovskite material like Sr2CrMoO6, which are known for intrinsic tunneling-type negative magnetoresistance. In the thin films, the high carriers’ density (~1022 cm−3) and ultrahigh mobility (~104 cm2 V−1 s−1) provide a low-resistivity (~10 nΩ·cm) platform for spin-polarized current. Our DFT calculations and magnetic measurements further support the half-metal band structure. The LMR effect in Sr2CrMoO6 could possibly originate from transport behavior that is governed by the guiding center motion of cyclotron orbitals, where the magnetic domain structure possibly provides disordered potential. The ultrahigh mobility and LMR in this system could broaden the applications of perovskites, and introduce more research on metallic oxide ferri-/ferro-magnetic materials. © The Author(s) 2021 - Open Access CC BY licence.en_AU
dc.description.sponsorshipWe are very grateful to Dr. Kirrily Rule for valuable discussions. This work is supported by National Natural Science Foundation of China (grant no. 11974155) and ARC Centre of Excellence in Future Low-Energy Electronic Technologies (CE170100039). Support from Jiangxi Key Laboratory for Two-Dimensional Materials is also acknowledged.en_AU
dc.identifier.articlenumber53en_AU
dc.identifier.citationWang, Z.-C., Chen, L., Li, S.-S., Ying, J.-S., Tang, F., Gao, G.-Y., Fang, Y., Zhao, W., Cortie, D., Wang, X., & Zheng, R.-K. (2021). Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films. npj Quantum Materials, 6(1), 53. doi:10.1038/s41535-021-00354-1en_AU
dc.identifier.issn2397-4648en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitlenpj Quantum Materialsen_AU
dc.identifier.urihttps://doi.org/10.1038/s41535-021-00354-1en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15437en_AU
dc.identifier.volume6en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherSpringer Natureen_AU
dc.subjectThin Filmsen_AU
dc.subjectMagnetic fieldsen_AU
dc.subjectScatteringen_AU
dc.subjectSpinen_AU
dc.subjectPerovskiteen_AU
dc.subjectCalculation methodsen_AU
dc.subjectOxidesen_AU
dc.subjectBismuthen_AU
dc.titleGiant linear magnetoresistance in half-metallic Sr2CrMoO6 thin filmsen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41535-021-00354-1.pdf
Size:
3.67 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections