Controlled atomic solubility in Mn‐rich composite material to achieve superior electrochemical performance for Li‐ion batteries

dc.contributor.authorLee, Jen_AU
dc.contributor.authorZhang, Qen_AU
dc.contributor.authorKim, Jen_AU
dc.contributor.authorDupre, Nen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorJeong, Men_AU
dc.contributor.authorYoon, WSen_AU
dc.contributor.authorGu, Len_AU
dc.contributor.authorKang, Ben_AU
dc.date.accessioned2021-07-28T00:55:06Zen_AU
dc.date.available2021-07-28T00:55:06Zen_AU
dc.date.issued2019-12-16en_AU
dc.date.statistics2021-07-12en_AU
dc.description.abstractThe quest for high energy density and high power density electrode materials for lithium-ion batteries has been intensified to meet strongly growing demand for powering electric vehicles. Conventional layered oxides such as Co-rich LiCoO2 and Ni-rich Li(NixMnyCoz)O2 that rely on only transition metal redox reaction have been faced with growing constraints due to soaring price on cobalt. Therefore, Mn-rich electrode materials excluding cobalt would be desirable with respect to available resources and low cost. Here, the strategy of achieving both high energy density and high power density in Mn-rich electrode materials by controlling the solubility of atoms between phases in a composite is reported. The resulting Mn-rich material that is composed of defective spinel phase and partially cation-disordered layered phase can achieve the highest energy density, ≈1100 W h kg−1 with superior power capability up to 10C rate (3 A g−1) among other reported Mn-rich materials. This approach provides new opportunities to design Mn-rich electrode materials that can achieve high energy density and high power density for Li-ion batteries. © 1999-2021 John Wiley & Sons, Inc.en_AU
dc.identifier.articlenumber1902231en_AU
dc.identifier.citationLee, J., Zhang, Q., Kim, J., Dupre, N., Avdeev, M., Jeong, M., Yoon, W.-S., Gu, L., & Kang, B. (2019). Controlled atomic solubility in Mn‐rich composite material to achieve superior electrochemical performance for Li‐ion batteries. Advanced Energy Materials, 10(5), 1902231. doi:10.1002/aenm.201902231en_AU
dc.identifier.issn1614-6840en_AU
dc.identifier.issue5en_AU
dc.identifier.journaltitleAdvanced Energy Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/aenm.201902231en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11113en_AU
dc.identifier.volume10en_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectComposite materialsen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectElectrodesen_AU
dc.subjectOxidesen_AU
dc.subjectRedox reactionsen_AU
dc.subjectTransition elementsen_AU
dc.subjectManganeseen_AU
dc.subjectElectric-powered vehiclesen_AU
dc.titleControlled atomic solubility in Mn‐rich composite material to achieve superior electrochemical performance for Li‐ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections