Low-overpotential rechargeable Na–CO2 batteries enabled by an oxygen-vacancy-rich cobalt oxide catalyst

dc.contributor.authorZheng, Zen_AU
dc.contributor.authorZheng, XBen_AU
dc.contributor.authorJiang, JCen_AU
dc.contributor.authorZhang, Qen_AU
dc.contributor.authorLi, Pen_AU
dc.contributor.authorLi, Cen_AU
dc.contributor.authorGu, QFen_AU
dc.contributor.authorWei, Len_AU
dc.contributor.authorKonstantinov, Ken_AU
dc.contributor.authorYang, WSen_AU
dc.contributor.authorChen, Yen_AU
dc.contributor.authorWang, JZen_AU
dc.date.accessioned2025-07-04T05:29:30Zen_AU
dc.date.available2025-07-04T05:29:30Zen_AU
dc.date.issued2024-03-26en_AU
dc.date.statistics2025-07-04en_AU
dc.description.abstractRechargeable sodium–carbon dioxide (Na–CO2) batteries have been proposed as a promising CO2 utilization technique, which could realize CO2 reduction and generate electricity at the same time. They suffer, however, from several daunting problems, including sluggish CO2 reduction and evolution kinetics, large polarization, and poor cycling stability. In this study, a rambutan-like Co3O4 hollow sphere catalyst with abundant oxygen vacancies was synthesized and employed as an air cathode for Na–CO2 batteries. Density functional theory calculations reveal that the abundant oxygen vacancies on Co3O4 possess superior CO2 binding capability, accelerating CO2 electroreduction, and thereby improving the discharge capacity. In addition, the oxygen vacancies also contribute to decrease the CO2 decomposition free energy barrier, which is beneficial for reducing the overpotential further and improving round-trip efficiency. Benefiting from the excellent catalytic ability of rambutan-like Co3O4 hollow spheres with abundant oxygen vacancies, the fabricated Na–CO2 batteries exhibit extraordinary electrochemical performance with a large discharge capacity of 8371.3 mA h g–1, a small overpotential of 1.53 V at a current density of 50 mA g–1, and good cycling stability over 85 cycles. These results provide new insights into the rational design of air cathode catalysts to accelerate practical applications of rechargeable Na–CO2 batteries and potentially Na–air batteries. © 2024 American Chemical Societyen_AU
dc.description.sponsorshipThis work was financially supported by the Australian Research Council (ARC) Discovery Project (DP180101453), Discovery Early Career Researcher Award (DE230101068), ARC Future Fellowship (FT210100218), and ARC Research Hub for Safe and Reliable Energy (IH200100035). The authors thank Dr. Stephen Bewlay for his critical reading of the manuscript. The authors also acknowledge the use of the facilities in the University of Wollongong Electron Microscopy Centre, with particular thanks to Dr. David Mitchell. All the authors have given approval to the final version of the manuscript.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationZheng, Z., Zheng, X., Jiang, J., Zhang, Q., Li, P., Li, C., Gu, Q., Wei, L., Konstantinov, K., Yang, W., Chen, Y., & Wang, J. (2024). Low-overpotential rechargeable Na–CO2 batteries enabled by an oxygen-vacancy-rich cobalt oxide catalyst. ACS Applied Materials & Interfaces, 16(14), 17657-17665. doi:10.1021/acsami.4c01682en_AU
dc.identifier.issn1944-8244en_AU
dc.identifier.issn1944-8252en_AU
dc.identifier.issue14en_AU
dc.identifier.journaltitleACS Applied Materials & Interfacesen_AU
dc.identifier.pagination17657-17665en_AU
dc.identifier.urihttps://doi.org/10.1021/acsami.4c01682en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16274en_AU
dc.identifier.volume16en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Society (ACS)en_AU
dc.subjectEnergy storage systemsen_AU
dc.subjectEnergy storageen_AU
dc.subjectDefectsen_AU
dc.subjectSolidsen_AU
dc.subjectElectrodesen_AU
dc.subjectFree energyen_AU
dc.subjectCarbon dioxideen_AU
dc.subjectLithium-water-air batteriesen_AU
dc.subjectFossil fuelsen_AU
dc.subjectOxygenen_AU
dc.subjectOxidesen_AU
dc.titleLow-overpotential rechargeable Na–CO2 batteries enabled by an oxygen-vacancy-rich cobalt oxide catalysten_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
am4c01682_si_001.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections