A customized strategy to design intercalation-type Li-free cathodes for all-solid-state batteries

dc.contributor.authorWang, Den_AU
dc.contributor.authorYu, Jen_AU
dc.contributor.authorYin, Xen_AU
dc.contributor.authorShao, Sen_AU
dc.contributor.authorLi, Qen_AU
dc.contributor.authorWang, YCen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorChen, LQen_AU
dc.contributor.authorShi, SQen_AU
dc.date.accessioned2024-03-01T03:58:55Zen_AU
dc.date.available2024-03-01T03:58:55Zen_AU
dc.date.issued2023-01-10en_AU
dc.date.statistics2024-03-01en_AU
dc.description.abstractPairing Li-free transition-metal-based cathodes (MX) with Li-metal anodes is an emerging trend to overcome the energy-density limitation of current rechargeable Li-ion technology. However, the development of practical Li-free MX cathodes is plagued by the existing notion of low voltage due to the long-term overlooked voltage-tuning/phase-stability competition. Here, we propose a p-type alloying strategy involving three voltage/phase-evolution stages, of which each of the varying trends are quantitated by two improved ligand-field descriptors to balance the above contradiction. Following this, an intercalation-type 2H-V1.75Cr0.25S4 cathode tuned from layered MX2 family is successfully designed, which possesses an energy density of 554.3 Wh kg−1 at the electrode level accompanied by interfacial compatibility with sulfide solid-state electrolyte. The proposal of this class of materials is expected to break free from scarce or high-cost transition-metal (e.g. Co and Ni) reliance in current commercial cathodes. Our experiments further confirm the voltage and energy-density gains of 2H-V1.75Cr0.25S4. This strategy is not limited to specific Li-free cathodes and offers a solution to achieve high voltage and phase stability simultaneously. TheAuthor(s) 2023. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licenseen_AU
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (U2030206, 22279077 and 11874254), the Natural Science Foundation of Shanghai (22ZR1424500) and the Key Research Project of Zhejiang Lab (2021PE0AC02).en_AU
dc.format.mediumElectronic-eCollectionen_AU
dc.identifier.citationWang, D., Yu, J., Yin, X., Shao, S., Li, Q., Wang, Y., Avdeev, M., Chen, L., & Shi, S. (2023). A customized strategy to design intercalation-type Li-free cathodes for all-solid-state batteries. National Science Review, 10(3). doi:10.1093/nsr/nwad010en_AU
dc.identifier.issn2095-5138en_AU
dc.identifier.issn2053-714Xen_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitleNational Science Reviewen_AU
dc.identifier.paginationnwad010-en_AU
dc.identifier.urihttp://dx.doi.org/10.1093/nsr/nwad010en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15523en_AU
dc.identifier.volume10en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherOxford University Pressen_AU
dc.subjectCathodesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectLigandsen_AU
dc.subjectElectrodesen_AU
dc.subjectEnergy densityen_AU
dc.subjectPhysical propertiesen_AU
dc.subjectEnergy storageen_AU
dc.titleA customized strategy to design intercalation-type Li-free cathodes for all-solid-state batteriesen_AU
dc.typeJournal Articleen_AU
dcterms.dateAccepted2023-01-04en_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
nwad010 (1).pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
nwad010_supplemental_file.pdf
Size:
3.24 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections