Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density

dc.contributor.authorWang, ZQen_AU
dc.contributor.authorWang, Den_AU
dc.contributor.authorZou, Zen_AU
dc.contributor.authorSong, Ten_AU
dc.contributor.authorNi, DXen_AU
dc.contributor.authorLi, ZZen_AU
dc.contributor.authorShao, XCen_AU
dc.contributor.authorYin, WJen_AU
dc.contributor.authorWang, YCen_AU
dc.contributor.authorLuo, WWen_AU
dc.contributor.authorWu, MSen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorXu, Ben_AU
dc.contributor.authorShi, Sen_AU
dc.contributor.authorOuyang, CYen_AU
dc.contributor.authorChen, LQen_AU
dc.date.accessioned2021-06-29T20:44:32Zen_AU
dc.date.available2021-06-29T20:44:32Zen_AU
dc.date.issued2020-07-27en_AU
dc.date.statistics2021-06-28en_AU
dc.description.abstractDesigning new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering. © The Author(s) 2020. Creative Commons CC BY Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.en_AU
dc.identifier.citationWang, Z., Wang, D., Zou, Z., Song, T., Ni, D., Li, Z., Shao, X., Yin, W., Wang, Y., Luo, W., Wu, M., Avdeev, M., Xu, B., Shi, S., Ouyang, C., & Chen, L. (2020). Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density. National Science Review, 7(11), 1768–1775. doi:10.1093/nsr/nwaa174en_AU
dc.identifier.issn2053-714Xen_AU
dc.identifier.issue11en_AU
dc.identifier.journaltitleNational Science Reviewen_AU
dc.identifier.pagination1768-1775en_AU
dc.identifier.urihttps://doi.org/10.1093/nsr/nwaa174en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10951en_AU
dc.identifier.volume7en_AU
dc.language.isoenen_AU
dc.publisherOxford Academicen_AU
dc.subjectCathodesen_AU
dc.subjectElectrochemistryen_AU
dc.subjectTuningen_AU
dc.subjectCrystal dopingen_AU
dc.subjectAnodesen_AU
dc.subjectElectrodesen_AU
dc.subjectRadioisotope batteriesen_AU
dc.subjectOxygenen_AU
dc.subjectOxidesen_AU
dc.subjectTransition elementsen_AU
dc.titleEfficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy densityen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nwaa174.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections