Significant reduction in thermal conductivity and improved thermopower of electron‐doped Ba1–xLaxTiO3 with nanostructured rectangular pores

dc.contributor.authorAhmed, AlJen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorYun, FFen_AU
dc.contributor.authorRahman, Yen_AU
dc.contributor.authorIslam, KNen_AU
dc.contributor.authorBake, Aen_AU
dc.contributor.authorKonstantinov, Ken_AU
dc.contributor.authorHossain, SAen_AU
dc.contributor.authorAlowasheeir, Aen_AU
dc.contributor.authorYamauchi, Yen_AU
dc.contributor.authorWang, Xen_AU
dc.date.accessioned2024-08-22T01:31:16Zen_AU
dc.date.available2024-08-22T01:31:16Zen_AU
dc.date.issued2021-04en_AU
dc.date.statistics2024-05-28en_AU
dc.description.abstractElectron‐doped BaTiO3 is a less studied n‐type metal oxide thermoelectric material. In this work, the electrical conductivity of BaTiO3 samples has been improved by introducing La to yield an n‐type Ba1–xLaxTiO3 semiconducting material. Density functional theory calculations show that the optimal electron‐doping occurs at x = 0.2, and this is also confirmed experimentally. To improve the thermoelectric properties further, nanostructured cuboidal pores are introduced into the bulk Ba1–xLaxTiO3 using F127 surfactant micelles for a chemical templating process, followed by spark plasma sintering. Interestingly, transmission electron microscopy images and X‐ray powder diffraction analysis confirms that our fabricated samples are cubic BaTiO3 perovskite phase with the nanostructured rectangular‐prism pores of >4 nm. Scanning electron microscopy images show that all the samples have similar grain boundaries and uniform La doping, which suggests that the large reduction in the lattice thermal conductivity in the F127‐treated samples arises primarily from the pore distribution, which introduces anisotropic phonon scattering within the unique nanoarchitecture. The sample with 20 at% La doping and nanopores also shows a thermopower that is doubled compared to the related sample without porosity. Together with the lattice thermal conductivity, enables a significant improvement in figure of merit, zT compared to the other samples. © 2021 Wiley-VCH GmbH.en_AU
dc.description.sponsorshipThe Ph.D. scholarship of the first author, A.J.A. was funded by the prestigious Endeavour Leadership Program of the Australian Government. The authors acknowledge the contribution of Tony Romeo at the UOW Electron Microscopy Centre. The authors also acknowledge the use of the JEOL 7500 SEM, and the JEOL2010 ARM at the UOW Electron Microscopy Centre.en_AU
dc.identifier.citationAhmed, A. J., Cortie, D. L., Yun, F. F., Rahman, Y., Nazrul Islam, S. M. K., Bake, A., Konstantinov, K., Hossain, M. S. A., Alowasheeir, A., Yamauchi, Y., & Wang, X. (2021). Significant reduction in thermal conductivity and improved thermopower of electron‐doped Ba1–xLaxTiO3 with nanostructured rectangular pores. Advanced Electronic Materials, 7(4), 2001044. doi:10.1002/aelm.202001044en_AU
dc.identifier.issn2199-160Xen_AU
dc.identifier.issue4en_AU
dc.identifier.journaltitleAdvanced Electronic Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/aelm.202001044en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15654en_AU
dc.identifier.volume7en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectThermal conductivityen_AU
dc.subjectDoped materialsen_AU
dc.subjectThermoelectric materialsen_AU
dc.subjectElectron microscopyen_AU
dc.subjectLanthanumen_AU
dc.subjectPlasmaen_AU
dc.titleSignificant reduction in thermal conductivity and improved thermopower of electron‐doped Ba1–xLaxTiO3 with nanostructured rectangular poresen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections