Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise

dc.contributor.authorRogers, Ken_AU
dc.contributor.authorKelleway, JJen_AU
dc.contributor.authorSaintilan, Nen_AU
dc.contributor.authorMegonigal, JPen_AU
dc.contributor.authorAdams, JBen_AU
dc.contributor.authorHolmquist, JRen_AU
dc.contributor.authorLu, Men_AU
dc.contributor.authorSchile-Beers, Len_AU
dc.contributor.authorZawadzki, Aen_AU
dc.contributor.authorMazumder, Den_AU
dc.contributor.authorWoodroffe, CDen_AU
dc.date.accessioned2021-08-24T01:37:04Zen_AU
dc.date.available2021-08-24T01:37:04Zen_AU
dc.date.issued2019-03-06en_AU
dc.date.statistics2021-08-18en_AU
dc.description.abstractCoastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems1,2, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates3. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century4, but these carbon–climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion4,5. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.7 to 3.7 times higher soil carbon concentrations within 20 centimetres of the surface than those subject to a long period of sea-level stability. This disparity increases with depth, with soil carbon concentrations reduced by a factor of 4.9 to 9.1 at depths of 50 to 100 centimetres. We analyse the response of a wetland exposed to recent rapid RSLR following subsidence associated with pillar collapse in an underlying mine and demonstrate that the gain in carbon accumulation and elevation is proportional to the accommodation space (that is, the space available for mineral and organic material accumulation) created by RSLR. Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space6 created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate–carbon modelling. © 2019 Springer Nature Limiteden_AU
dc.identifier.citationRogers, K., Kelleway, J. J., Saintilan, N., Megonigal, J. P., Adams, J. B., Holmquist, J. R., Lu, M., Schile-Beers, L., Zawadzki, A., Mazumder, D., & Woodroffe, C. D. (2019). Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature, 567(7746), 91-95. doi:10.1038/s41586-019-0951-7en_AU
dc.identifier.issn1476-4687en_AU
dc.identifier.issue7746en_AU
dc.identifier.journaltitleNatureen_AU
dc.identifier.pagination91-95en_AU
dc.identifier.urihttps://doi.org/10.1038/s41586-019-0951-7en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11433en_AU
dc.identifier.volume567en_AU
dc.language.isoenen_AU
dc.publisherSpringer Nature Limiteden_AU
dc.subjectWetlandsen_AU
dc.subjectCarbonen_AU
dc.subjectCoastal regionsen_AU
dc.subjectMangrovesen_AU
dc.subjectClimatic changeen_AU
dc.subjectSea levelen_AU
dc.subjectQuaternary perioden_AU
dc.titleWetland carbon storage controlled by millennial-scale variation in relative sea-level riseen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections