Complex magnetic structure in strained nanoscale bismuth ferrite thin films

dc.contributor.authorUlrich, Cen_AU
dc.contributor.authorBertinshaw, Jen_AU
dc.contributor.authorMaran, Ren_AU
dc.contributor.authorCallori, SJen_AU
dc.contributor.authorRamesh, Ven_AU
dc.contributor.authorCheng, Jen_AU
dc.contributor.authorDanilkin, SAen_AU
dc.contributor.authorHu, Sen_AU
dc.contributor.authorSiedel, Jen_AU
dc.contributor.authorValanoor, Nen_AU
dc.date.accessioned2022-08-29T05:47:18Zen_AU
dc.date.available2022-08-29T05:47:18Zen_AU
dc.date.issued2016-02-02en_AU
dc.date.statistics2021-09-24en_AU
dc.description.abstractMultiferroic materials demonstrate excellent potential for next-generation multifunctional devices, as they exhibit coexisting ferroelectric and magnetic orders. Bismuth ferrite (BiFeO3) is a rare exemption where both order parameters coexist far beyond room temperature, making it the ideal candidate for technological applications. In particular, multiferroic thin films are the most promising pathway for spintronics applications. Therefore we have investigated BiFeO3 thin films by neutron diffraction. At present, the underlying physics of the magnetoelectric coupling is not fully understood and competing theories exist with partly conflicting predictions. For example, the existence of spin cycloid is a mandatory requirement to establish a direct magnetoelectric coupling. Thus far internal strain in epitaxially grown films has limited the stability of the spin cycloid for BiFeO3 films with less than 300 nm thickness, causing the spin cycloid to collapses to a collinear G-type antiferromagnetic structure. Our neutron diffraction experiments have demonstrated that we were able to realize a spin cycloid in films of just 100 nm thickness through improved electrostatic and epitaxial constraints. This underlines the importance of the correct mechanical and electrical boundary conditions required to achieve emergent spin properties in mutiferroic thin film systems. The discovery of a large scale uniform cycloid in thin film BiFeO3 opens new avenues for fundamental research and technical applications that exploit the spin cycloid in spintronic or magnonic devices.en_AU
dc.identifier.citationUlrich, C., Bertinshaw, J., Maran, R., Callori, S. J., Ramesh, V., Cheung, J., Danilkin, S., Hu, S., Siedel, J., & Valanoor, N. (2016). Complex magnetic structure in strained nanoscale bismuth ferrite thin films. Paper presented to the 40th Annual Condensed Matter and Materials Meeting Charles Sturt University, Wagga Wagga, NSW, 2nd February – 5th February, 2016, (pp. 139). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2016/Wagga_2016_Conference_Handbook.pdfen_AU
dc.identifier.conferenceenddate5 February 2016en_AU
dc.identifier.conferencename40th Annual Condensed Matter and Materials Meetingen_AU
dc.identifier.conferenceplaceWagga Wagga, NSWen_AU
dc.identifier.conferencestartdate2 February 2016en_AU
dc.identifier.otherTP28en_AU
dc.identifier.other978-0-646-96433-1en_AU
dc.identifier.pagination139en_AU
dc.identifier.urihttps://physics.org.au/wp-content/uploads/cmm/2016/Wagga_2016_Conference_Handbook.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/13654en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Physicsen_AU
dc.subjectAngular momentumen_AU
dc.subjectCoherent scatteringen_AU
dc.subjectDielectric materialsen_AU
dc.subjectDiffractionen_AU
dc.subjectFerrimagnetic materialsen_AU
dc.subjectFilmsen_AU
dc.subjectIron compoundsen_AU
dc.subjectMagnetic materialsen_AU
dc.subjectMaterialsen_AU
dc.subjectMobilityen_AU
dc.subjectOxygen compoundsen_AU
dc.subjectParticle mobilityen_AU
dc.subjectParticle propertiesen_AU
dc.subjectPhysical propertiesen_AU
dc.subjectScatteringen_AU
dc.subjectTransition element compoundsen_AU
dc.titleComplex magnetic structure in strained nanoscale bismuth ferrite thin filmsen_AU
dc.typeConference Posteren_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wagga_2016_Conference_Handbook(2).pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: