Introducing 4s–2p orbital hybridization to stabilize spinel oxide cathodes for lithium-ion batteries

dc.contributor.authorLiang, GMen_AU
dc.contributor.authorOlsson, Een_AU
dc.contributor.authorZou, JSen_AU
dc.contributor.authorWu, ZBen_AU
dc.contributor.authorLi, JXen_AU
dc.contributor.authorLu, CZen_AU
dc.contributor.authorD'Angelo, AMen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorThomsen, Len_AU
dc.contributor.authorCowie, BCCen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorCai, Qen_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorGuo, ZPen_AU
dc.date.accessioned2023-11-20T23:32:40Zen_AU
dc.date.available2023-11-20T23:32:40Zen_AU
dc.date.issued2022-04-25en_AU
dc.date.statistics2022-05-27en_AU
dc.description.abstractOxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium-ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d–2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s–2p orbital hybridization into the structure using LiNi0.5Mn1.5O4 oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000 cycles at 1 C. This work shows that an orbital-level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital-focused engineering a new avenue for the fundamental modification of battery materials. © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH - Open access.en_AU
dc.description.sponsorshipThis work is supported by the Australian Research Council under grants FT160100251, DP200101862, DP210101486, and FL210100050. Dr. G. Liang thanks the Australian Institute of Nuclear Science and Engineering (AINSE) Limited for providing financial assistance in the form of a Post Graduate Research Award (PGRA). The authors acknowledge the operational support of ANSTO staff for neutron/synchrotron-based characterizations (Awarded beamtime: M16603, M16093, M14711, P9158). The support from Engineering and Physical Sciences Council (grant numbers EP/R021554/2, EP/L000202, EP/P020194 and EP/T022213) and University of Surrey Academic Disruption Fund are appreciated. Open access publishing facilitated by The University of Adelaide, as part of the Wiley - The University of Adelaide agreement via the Council of Australian University Librarians.en_AU
dc.identifier.articlenumbere20220196961en_AU
dc.identifier.citationLiang, G., Olsson, E., Zou, J., Wu, Z., Li, J., Lu, C.-Z., D'Angelo, A. M., Johannessen, B., Thomsen, L., Cowie, B., Peterson, V., K., Cai, Q., Pang, W. K., Guo, Z. (2022). Introducing 4s–2p orbital hybridization to stabilize spinel oxide cathodes for lithium-ion batteries. Angewandte Chemie International Edition, 61(27), e20220196961. doi:10.1002/anie.202201969en_AU
dc.identifier.issn1433-7851en_AU
dc.identifier.issue27en_AU
dc.identifier.journaltitleAngewandte Chemie International Editionen_AU
dc.identifier.urihttps://doi.org/10.1002/anie.202201969en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15214en_AU
dc.identifier.volume61en_AU
dc.language.isoenen_AU
dc.publisherWiley-VCH GmbHen_AU
dc.relation.urihttps://doi.org/10.1002/anie.202201969en_AU
dc.subjectOxidesen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectCathodesen_AU
dc.subjectOxygenen_AU
dc.subjectScandiumen_AU
dc.subjectPotassiumen_AU
dc.subjectCationsen_AU
dc.subjectElectrodesen_AU
dc.titleIntroducing 4s–2p orbital hybridization to stabilize spinel oxide cathodes for lithium-ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Angew Chem Int Ed - 2022 - Liang - Introducing 4s 2p Orbital Hybridization to Stabilize Spinel Oxide Cathodes for.pdf
Size:
5.99 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections