An ordered P2/P3 composite layered oxide cathode with long cycle life in sodium-ion batteries

dc.contributor.authorRahman, MMen_AU
dc.contributor.authorMao, Jen_AU
dc.contributor.authorKan, WHen_AU
dc.contributor.authorSun, CJen_AU
dc.contributor.authorLi, LXen_AU
dc.contributor.authorZhang, Yen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorDu, XWen_AU
dc.contributor.authorLin, Fen_AU
dc.date.accessioned2021-03-18T21:20:02Zen_AU
dc.date.available2021-03-18T21:20:02Zen_AU
dc.date.issued2019-10-16en_AU
dc.date.statistics2021-03-18en_AU
dc.description.abstractDeveloping stable cathode materials represents a crucial step toward long-life sodium-ion batteries. P2-type layered oxides are important as cathodes for their reversibility, but their long-term performance in full cells remains a key challenge. Herein, we report Na0.75Co0.125Cu0.125Fe0.125Ni0.125Mn0.5O2 with an intergrowth of ordered P2 and P3 phases, studied by neutron diffraction and Rietveld refinement. A stable electrochemical performance is achieved in Na half cells with 100% capacity retention at a rate of C/10 after 100 cycles (initial capacity of 90 mAh/g), 96% capacity retention at a rate of 1 C after 500 cycles (initial capacity of 70 mAh/g), and 85% capacity retention at a rate of 5 C after 1000 cycles (initial capacity of 55 mAh/g). Stable full cell performance is achieved with 84.2% capacity retention after 1000 cycles at a rate of 1 C. Synchrotron X-ray diffraction, spectroscopy, and imaging are applied to elucidate the relationship between chemical/structural evolution and battery performance. A reversible local and global structural evolution is observed during initial cycles. Meanwhile, the challenges with enabling prolonged cycling (beyond 1000 cycles) may be associated with Fe dissolution and formation of a copper oxide phase. This study implies that cathodes with complex chemical and structural formations may stabilize electrochemical performance and highlights the importance of decoupling the contribution of each transition metal to performance degradation. © 2019 American Chemical Societyen_AU
dc.identifier.citationRahman, M. M., Mao, J., Kan, W. H., Sun, C.- J., Li, L., Zhang, Y., Avdeev, M., Du, X.- W., & Lin, F. (2019). An ordered P2/P3 composite layered oxide cathode with long cycle life in sodium-ion batteries. ACS Materials Letters, 1(5), 573–581. doi:10.1021/acsmaterialslett.9b00347en_AU
dc.identifier.issn2639-4979en_AU
dc.identifier.issue5en_AU
dc.identifier.journaltitleACS Materials Lettersen_AU
dc.identifier.pagination573-581en_AU
dc.identifier.urihttps://doi.org/10.1021/acsmaterialslett.9b00347en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10572en_AU
dc.identifier.volume1en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectElectrodesen_AU
dc.subjectPhase transformationsen_AU
dc.subjectElectrochemical cellsen_AU
dc.subjectTransition elementsen_AU
dc.subjectOxidesen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectCathodesen_AU
dc.subjectElectric batteriesen_AU
dc.titleAn ordered P2/P3 composite layered oxide cathode with long cycle life in sodium-ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections