Temperature dependence of structure and ionic conductivity of LiTa2PO8 ceramics

dc.contributor.authorDai, Ren_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorKim, SJen_AU
dc.contributor.authorRao, RPen_AU
dc.contributor.authorAdams, Sten_AU
dc.date.accessioned2024-03-01T04:15:17Zen_AU
dc.date.available2024-03-01T04:15:17Zen_AU
dc.date.issued2022-11-30en_AU
dc.date.statistics2024-03-01en_AU
dc.description.abstractLiTa2PO8 has recently been reported as a new fast Li-ion conducting structure type within the series of Lix(MO6/2)m(TO4/2)n polyanion oxides. Here, we demonstrate the preparation of LiTa2PO8 by solid-state syntheses, clarify the temperature dependence of lithium distribution and ionic conductivity, and study the structural stability, densification, and achievable total conductivity as a function of sintering conditions synergizing experimental neutron and X-ray powder diffraction and electrochemical studies with computational energy landscape analyses and molecular dynamics simulations. A total room temperature conductivity of 0.7 mS cm-1 with an activation energy of 0.27 eV is achieved after sintering at 1323 K for 10 h. Spark plasma sintering yields high densification >98%, highly reproducible bulk conductivities of 2.8 mS cm-1, in agreement with our bond valence site energy-based pathway predictions, and total conductivities of 0.6 mS cm-1 within minutes. Powder diffraction studies from 3 to 1273 K reveal a reversible flipping of the monoclinic angle from above to below 90° close to room temperature as a consequence of rearrangements of the mobile ions that change the detailed pathway topology. A consistent model of the temperature-dependent Li redistribution, conductivity anisotropy, and transport mechanism is derived from a synopsis of diffraction experiments, experimental conductivity studies, and simulations. Due to the limited electrochemical window of Lix(TaO6/2)2(PO4/2)1 (LTPO), a direct contact with Li metal or high voltage cathode materials leads to degradation, but as demonstrated in this work, semi-solid-state batteries, where LTPO is protected from direct contact with lithium by organic buffer layers, achieve stable cycling. © 2022 American Chemical Societyen_AU
dc.description.sponsorshipFinancial support to S.A. from Singapore Ministry of Education in the frame of the AcRF Tier1 grant R284-000-250-114 is gratefully acknowledged.en_AU
dc.identifier.citationDai, R., Avdeev, M., Kim, S.-J., Prasada Rao, R., & Adams, S. (2022). Temperature Dependence of Structure and Ionic Conductivity of LiTa2PO8 Ceramics. Chemistry of Materials, 34(23), 10572-10583. doi:10.1021/acs.chemmater.2c02640en_AU
dc.identifier.issn0897-4756en_AU
dc.identifier.issn1520-5002en_AU
dc.identifier.issue23en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination10572-10583en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/acs.chemmater.2c02640en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15524en_AU
dc.identifier.volume34en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectTemperature dependenceen_AU
dc.subjectIonic conductivityen_AU
dc.subjectLithiumen_AU
dc.subjectTantalumen_AU
dc.subjectPoloniumen_AU
dc.subjectSinteringen_AU
dc.subjectDiffractionen_AU
dc.subjectElectrolytesen_AU
dc.titleTemperature dependence of structure and ionic conductivity of LiTa2PO8 ceramicsen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cm2c02640_si_001.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections