Critical deposition height for sustainable restoration via laser additive manufacturing

dc.contributor.authorPaul, Sen_AU
dc.contributor.authorSingh, Ren_AU
dc.contributor.authorYan, Wen_AU
dc.contributor.authorSamajdar, Ien_AU
dc.contributor.authorParadowska, AMen_AU
dc.contributor.authorThool, Ken_AU
dc.contributor.authorReid, Men_AU
dc.date.accessioned2021-02-11T03:31:29Zen_AU
dc.date.available2021-02-11T03:31:29Zen_AU
dc.date.issued2013-10-03en_AU
dc.date.statistics2021-02-09en_AU
dc.description.abstractLaser material deposition based restoration of high-value components can be a revolutionary technology in remanufacturing. The deposition process induces residual stresses due to thermomechanical behavior and metallurgical transformations. The presence of tensile residual stresses in the deposited layer will compromise the fatigue life of the restored component. We have developed a novel fully coupled metallurgical, thermal and mechanical (metallo-thermomechanical) model to predict residual stresses and identified a critical deposition height, which ensures compressive residual stresses in the deposited layer. Any lower deposition height will result in tensile residual stresses and higher deposition height will result in excessive dilution (substrate melting). We have validated the model using neutron and micro-focus X-ray diffraction measurements. This study highlights that the critical deposition height corresponds to the minimum cooling rate during solidification. It addresses one of the major outstanding problems of additive manufacturing and paves a way for “science-enabled-technology” solutions for sustainable restoration/remanufacturing. © 2021 Springer Nature Limiteden_AU
dc.identifier.citationPaul, S., Singh, R., Yan, W., Samajdar, I., Paradowska, A., Thool, K., & Reid, M. (2018). Critical deposition height for sustainable restoration via laser additive manufacturing. Scientific Reports, 8, 14726. doi:10.1038/s41598-018-32842-zen_AU
dc.identifier.issn2045-2322en_AU
dc.identifier.journaltitleScientific Reportsen_AU
dc.identifier.pagination14726en_AU
dc.identifier.urihttps://doi.org/10.1038/s41598-018-32842-zen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10378en_AU
dc.identifier.volume8en_AU
dc.language.isoenen_AU
dc.publisherSpringer Natureen_AU
dc.subjectMechanical engineeringen_AU
dc.subjectResidual stressesen_AU
dc.subjectDepositionen_AU
dc.subjectLasersen_AU
dc.subjectMetallurgical effectsen_AU
dc.subjectThermomechanical treatmentsen_AU
dc.subjectTensile propertiesen_AU
dc.subjectFatigueen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectX-ray diffractionen_AU
dc.titleCritical deposition height for sustainable restoration via laser additive manufacturingen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-018-32842-z.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections