Copper diffusion rates and hopping pathways in superionic Cu 2Se: implications for thermoelectricity

dc.contributor.authorNazrul Islam, SMKen_AU
dc.contributor.authorMayank, Pen_AU
dc.contributor.authorOuyang, Yen_AU
dc.contributor.authorChen, Jen_AU
dc.contributor.authorSagotra, AKen_AU
dc.contributor.authorLi, Men_AU
dc.contributor.authorCortie, MBen_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorCazorla, Cen_AU
dc.contributor.authorYu, DHen_AU
dc.contributor.authorWang, XLen_AU
dc.contributor.authorRobinson, RAen_AU
dc.contributor.authorCortie, DLen_AU
dc.date.accessioned2024-08-22T00:32:59Zen_AU
dc.date.available2024-08-22T00:32:59Zen_AU
dc.date.issued2020-10-21en_AU
dc.date.statistics2024-06-27en_AU
dc.description.abstractThe ultra-low thermal conductivity of Cu2Se is well established, but there is so far no consensus on the underlying mechanism. One proposal is that the fast-ionic diffusion of copper suppresses the acoustic phonons. The diffusion coefficients reported previously, however, differ by two orders of magnitude between the various studies and it remains unclear whether the diffusion is fast enough to impact the heat-bearing phonons. Here, a two-fold approach is used to accurately re-determine the diffusion rates. Ab-initio molecular dynamics simulations, incorporating landmark analysis techniques, were closely compared with experimental quasielastic/inelastic neutron spectroscopy. Reasonable agreement was found between these approaches, consistent with the experimental coefficient of 3.1 ± 1.3 10-5 cm2.s-1 and an activation barrier of 140 ± 60 meV. The hopping mechanism includes short 2 Å hops between tetragonal and interstitial octahedral sites. This process forms dynamic Frenkel defects, however, there is no indication of additional broadening in the density-of-states indicating the intrinsic anharmonic interactions dictate the phonon lifetimes. © Preprint article - 2023 Elsevier Inc.en_AU
dc.description.sponsorshipWe acknowledge the support of ANSTO, in providing the access to PELICAN for this work. This research was undertaken, in part, using the Powder Diffraction beamline at the Australian Synchrotron. High performance computation was performed on the RAIJIN and PAWSEY supercomputers within the National Computer Infrastructure.en_AU
dc.identifier.citationNazrul Islam, S. M. K., Mayank, P., Ouyang, Y., Chen, J., Sagotra, A. K., Li, M., Cortie, M. B., Mole, R., Cazorla, C., Yu, D., Wang, X., Robinson, R. A., & Cortie, D. L. (2020). Copper diffusion rates and hopping pathways in superionic Cu 2Se: implications for thermoelectricity. Available at SSRN: ssrn.com/abstract=3716044 or doi.org/10.2139/ssrn.3716044en_AU
dc.identifier.issn1556-5068en_AU
dc.identifier.journaltitleSSRN Electronic Journalen_AU
dc.identifier.urihttp://dx.doi.org/10.2139/ssrn.3716044en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15652en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherSSRNen_AU
dc.subjectCopper selenidesen_AU
dc.subjectMolecular dynamics methoden_AU
dc.subjectThermoelectricityen_AU
dc.subjectDiffusionen_AU
dc.subjectSpectroscopyen_AU
dc.subjectNeutron diffractionen_AU
dc.titleCopper diffusion rates and hopping pathways in superionic Cu 2Se: implications for thermoelectricityen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ssrn-3716044.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections