Atomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn–air batteries

dc.contributor.authorTian, YHen_AU
dc.contributor.authorWu, ZZen_AU
dc.contributor.authorLi, Men_AU
dc.contributor.authorSun, Qen_AU
dc.contributor.authorChen, Hen_AU
dc.contributor.authorYuan, Den_AU
dc.contributor.authorDeng, Den_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorWang, Yen_AU
dc.contributor.authorZhong, YLen_AU
dc.contributor.authorXu, Len_AU
dc.contributor.authorLu, Jen_AU
dc.contributor.authorZhang, SQen_AU
dc.date.accessioned2025-10-17T02:55:45Zen_AU
dc.date.available2025-10-17T02:55:45Zen_AU
dc.date.issued2022-10-30en_AU
dc.date.statistics2025-10-15en_AU
dc.description.abstractExcellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity and rapid mass transport capability are two important parameters of electrocatalysts for high‐performance rechargeable Zn–air batteries (ZABs). Herein, an efficient atomic modulation and structure design to promote bifunctional activity and mass transport kinetics of an ORR/OER electrocatalyst are reported. Specifically, atomic Fe−N4 moieties are immobilized on premade hollow carbon fibers with encapsulated Ni nanoparticles (Fe‐N@Ni‐HCFs). Synchrotron X‐ray absorption spectroscopy and spherical aberration‐corrected electron microscope analyses confirm the atomic distribution of the active sites and unique lung bubble‐like hollow architecture of the catalyst, while theoretical investigations reveal that the encapsulated Ni nanoparticles can induce electron distribution of the atomic Fe−N4 moieties to reduce reaction energy barriers. As a result, the prepared catalyst possesses enhanced bifunctional ORR/OER activity and well‐constructed gas–solid–liquid interfaces for improved mass transfer. These synergetic advantages endow the binder‐free Fe‐N@Ni‐HCFs electrode with the remarkable power density and cycling stability for ZABs, outperforming the commercial Pt/C+Ir/C benchmark. This exceptional performance suggests that the proposed strategy can be extended to the design and fabrication of electrocatalysts for energy conversion and storage. © 2022 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. Open Access - CC-BY.en_AU
dc.description.sponsorshipThis work was financially supported by the Australian Research Council Discovery Project (grant No. DP210103266). The authors acknowledge the National Computational Infrastructure (NCI) National Facility systems at the Australian National University and the PAWSEY Supercomputing Centre located in Western Australia for providing computational resources. The authors are grateful to the Australian Synchrotron, part of Australia's Nuclear Science and Technology Organisation (ANSTO) in Melbourne, for providing XAS measurements. Y.T. would like to thank AINSE Ltd. for providing financial support (Postgraduate Research Award). Open access publishing facilitated by Griffith University, as part of the Wiley - Griffith University agreement via the Council of Australian University Librarians.en_AU
dc.identifier.citationTian, Y., Wu, Z., Li, M., Sun, Q., Chen, H., Yuan, D., Deng, D., Johannessen, B., Wang, Y., Zhong, Y., Xu, L., Lu, J., & Zhang, S. (2022). Atomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn–air batteries. Advanced Functional Materials, 32(52), 2209273. doi:10.1002/adfm.202209273en_AU
dc.identifier.issn1616-301Xen_AU
dc.identifier.issn1616-3028en_AU
dc.identifier.issue52en_AU
dc.identifier.journaltitleAdvanced Functional Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/adfm.202209273en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16617en_AU
dc.identifier.volume32en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectIronen_AU
dc.subjectNickelen_AU
dc.subjectZincen_AU
dc.subjectCarbon fibersen_AU
dc.subjectNanoparticlesen_AU
dc.subjectZinc-air batteriesen_AU
dc.subjectOxygenen_AU
dc.subjectKineticsen_AU
dc.subjectElectrochemical energy conversionen_AU
dc.subjectRedox reactionsen_AU
dc.subjectElectrolytesen_AU
dc.titleAtomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn–air batteriesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Adv Funct Materials - 2022 - Tian - Atomic Modulation and Structure Design of Fe N4 Modified Hollow Carbon Fibers with.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
adfm202209273-supp-0001-suppmat.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections