Atomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn–air batteries
dc.contributor.author | Tian, YH | en_AU |
dc.contributor.author | Wu, ZZ | en_AU |
dc.contributor.author | Li, M | en_AU |
dc.contributor.author | Sun, Q | en_AU |
dc.contributor.author | Chen, H | en_AU |
dc.contributor.author | Yuan, D | en_AU |
dc.contributor.author | Deng, D | en_AU |
dc.contributor.author | Johannessen, B | en_AU |
dc.contributor.author | Wang, Y | en_AU |
dc.contributor.author | Zhong, YL | en_AU |
dc.contributor.author | Xu, L | en_AU |
dc.contributor.author | Lu, J | en_AU |
dc.contributor.author | Zhang, SQ | en_AU |
dc.date.accessioned | 2025-10-17T02:55:45Z | en_AU |
dc.date.available | 2025-10-17T02:55:45Z | en_AU |
dc.date.issued | 2022-10-30 | en_AU |
dc.date.statistics | 2025-10-15 | en_AU |
dc.description.abstract | Excellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity and rapid mass transport capability are two important parameters of electrocatalysts for high‐performance rechargeable Zn–air batteries (ZABs). Herein, an efficient atomic modulation and structure design to promote bifunctional activity and mass transport kinetics of an ORR/OER electrocatalyst are reported. Specifically, atomic Fe−N4 moieties are immobilized on premade hollow carbon fibers with encapsulated Ni nanoparticles (Fe‐N@Ni‐HCFs). Synchrotron X‐ray absorption spectroscopy and spherical aberration‐corrected electron microscope analyses confirm the atomic distribution of the active sites and unique lung bubble‐like hollow architecture of the catalyst, while theoretical investigations reveal that the encapsulated Ni nanoparticles can induce electron distribution of the atomic Fe−N4 moieties to reduce reaction energy barriers. As a result, the prepared catalyst possesses enhanced bifunctional ORR/OER activity and well‐constructed gas–solid–liquid interfaces for improved mass transfer. These synergetic advantages endow the binder‐free Fe‐N@Ni‐HCFs electrode with the remarkable power density and cycling stability for ZABs, outperforming the commercial Pt/C+Ir/C benchmark. This exceptional performance suggests that the proposed strategy can be extended to the design and fabrication of electrocatalysts for energy conversion and storage. © 2022 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH. Open Access - CC-BY. | en_AU |
dc.description.sponsorship | This work was financially supported by the Australian Research Council Discovery Project (grant No. DP210103266). The authors acknowledge the National Computational Infrastructure (NCI) National Facility systems at the Australian National University and the PAWSEY Supercomputing Centre located in Western Australia for providing computational resources. The authors are grateful to the Australian Synchrotron, part of Australia's Nuclear Science and Technology Organisation (ANSTO) in Melbourne, for providing XAS measurements. Y.T. would like to thank AINSE Ltd. for providing financial support (Postgraduate Research Award). Open access publishing facilitated by Griffith University, as part of the Wiley - Griffith University agreement via the Council of Australian University Librarians. | en_AU |
dc.identifier.citation | Tian, Y., Wu, Z., Li, M., Sun, Q., Chen, H., Yuan, D., Deng, D., Johannessen, B., Wang, Y., Zhong, Y., Xu, L., Lu, J., & Zhang, S. (2022). Atomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn–air batteries. Advanced Functional Materials, 32(52), 2209273. doi:10.1002/adfm.202209273 | en_AU |
dc.identifier.issn | 1616-301X | en_AU |
dc.identifier.issn | 1616-3028 | en_AU |
dc.identifier.issue | 52 | en_AU |
dc.identifier.journaltitle | Advanced Functional Materials | en_AU |
dc.identifier.uri | https://doi.org/10.1002/adfm.202209273 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/16617 | en_AU |
dc.identifier.volume | 32 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Wiley | en_AU |
dc.subject | Iron | en_AU |
dc.subject | Nickel | en_AU |
dc.subject | Zinc | en_AU |
dc.subject | Carbon fibers | en_AU |
dc.subject | Nanoparticles | en_AU |
dc.subject | Zinc-air batteries | en_AU |
dc.subject | Oxygen | en_AU |
dc.subject | Kinetics | en_AU |
dc.subject | Electrochemical energy conversion | en_AU |
dc.subject | Redox reactions | en_AU |
dc.subject | Electrolytes | en_AU |
dc.title | Atomic modulation and structure design of Fe−N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn–air batteries | en_AU |
dc.type | Journal Article | en_AU |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- Adv Funct Materials - 2022 - Tian - Atomic Modulation and Structure Design of Fe N4 Modified Hollow Carbon Fibers with.pdf
- Size:
- 4.22 MB
- Format:
- Adobe Portable Document Format
- Description:
Loading...
- Name:
- adfm202209273-supp-0001-suppmat.pdf
- Size:
- 1.69 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1