Enhanced high voltage stability of spinel‐type structured LiNi0.5Mn1.5O4 electrodes: targeted octahedral crystal site modification

dc.contributor.authorZou, JSen_AU
dc.contributor.authorLiang, Gen_AU
dc.contributor.authorZhang, SHen_AU
dc.contributor.authorThomsen, Len_AU
dc.contributor.authorFan, Yen_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorGuo, ZPen_AU
dc.contributor.authorPeterson, VKen_AU
dc.date.accessioned2024-10-03T22:28:13Zen_AU
dc.date.available2024-10-03T22:28:13Zen_AU
dc.date.issued2024-05-01en_AU
dc.date.statistics2024-10en_AU
dc.description.abstractHigh‐voltage spinel‐type structured LiNi0.5Mn1.5O4 (LNMO) shows promise as a next‐generation high‐energy‐density lithium‐ion battery cathode material, however, capacity decay on extended cycling hinders its widespread adoption, underscoring an urgent need for further development. In this work, we introduce Zn at octahedral 16c crystal sites in LNMO with Fdm space group to improve rate capability and reduce the rapid capacity decay otherwise experienced during extended cycling. The current work resolves the detailed influence of isolated modification at octahedral 16c crystal sites, unveiling the mechanism for these performance improvements. We show that occupation of Zn at previously empty 16c sites prevents the migration of Ni/Mn to adjacent 16c sites, eliminating transformation to a rock‐salt type structured Ni0.25Mn0.75O2 phase above 4.8 V, preventing structure degradation and suppressing voltage polarization. This study provides insights into the fundamental structure‐function relationship of the LNMO battery cathode, pointing to pathways for the crystal structure engineering of materials with superior performance. © 2024 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_AU
dc.description.sponsorshipThis work is supported by the Australian Research Council (FL210100050) and Australia's Economic Accelerator Seed Program (Grant Number AE230100120). This research was also supported by an AINSE Ltd. Early Career Researcher Grant (ECRG- G. Liang). Part of this work was carried out at the Powder Diffraction beamline (M20500), the Soft X-ray (SXR) beamline (M20609, M21238) of the Australian Synchrotron, and the Echidna instrument (P14124) at the Australian Centre for Neutron Scattering at the Australian Nuclear Science and Technology Organisation (ANSTO). Open Access publishing facilitated by Australian Nuclear Science and Technology Organisation, as part of the Wiley - Australian Nuclear Science and Technology Organisation agreement via the Council of Australian University Librarians.en_AU
dc.identifier.articlenumbere202400123en_AU
dc.identifier.citationZou, J., Liang, G., Zhang, S., Thomsen, L., Fan, Y., Pang, W. K., Guo, Z., & Peterson, V. K. (2024). Enhanced High Voltage Stability of Spinel-Type Structured LiNi0.5Mn1.5O4 Electrodes: Targeted Octahedral Crystal Site Modification. Batteries & Supercaps, 7(8), e202400123. doi:10.1002/batt.202400123en_AU
dc.identifier.issn2566-6223en_AU
dc.identifier.issue8en_AU
dc.identifier.journaltitleBatteries & Supercapsen_AU
dc.identifier.urihttp://dx.doi.org/10.1002/batt.202400123en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15717en_AU
dc.identifier.volume7en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectSpinelsen_AU
dc.subjectElectrodesen_AU
dc.subjectCrystalsen_AU
dc.subjectZincen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectCathodesen_AU
dc.subjectNickelen_AU
dc.subjectMaterialsen_AU
dc.titleEnhanced high voltage stability of spinel‐type structured LiNi0.5Mn1.5O4 electrodes: targeted octahedral crystal site modificationen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Batteries Supercaps - 2024 - Zou - Enhanced High Voltage Stability of Spinel‐Type Structured LiNi0 5Mn1 5O4 Electrodes .pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
batt202400123-sup-0001-misc_information.pdf
Size:
926.61 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections