Experimental investigation of the characteristics of radioactive beams for heavy ion therapy
dc.contributor.author | Chacon, A | en_AU |
dc.contributor.author | James, B | en_AU |
dc.contributor.author | Tran, LT | en_AU |
dc.contributor.author | Guatelli, S | en_AU |
dc.contributor.author | Chartier, L | en_AU |
dc.contributor.author | Prokopovich, DA | en_AU |
dc.contributor.author | Franklin, DR | en_AU |
dc.contributor.author | Mohammadi, A | en_AU |
dc.contributor.author | Nishikido, F | en_AU |
dc.contributor.author | Iwao, Y | en_AU |
dc.contributor.author | Akamatsu, G | en_AU |
dc.contributor.author | Takyu, S | en_AU |
dc.contributor.author | Tashima, H | en_AU |
dc.contributor.author | Yamaya, T | en_AU |
dc.contributor.author | Parodi, K | en_AU |
dc.contributor.author | Rosenfeld, AB | en_AU |
dc.contributor.author | Safavi-Naeini, M | en_AU |
dc.date.accessioned | 2024-12-06T02:23:58Z | en_AU |
dc.date.available | 2024-12-06T02:23:58Z | en_AU |
dc.date.issued | 2020-07 | en_AU |
dc.date.statistics | 2024-10-30 | en_AU |
dc.description | Dale Prokopvich is spelt incorrectly in the citation and on the website of the publisher. The correct spelling is Prokopovich. | en_AU |
dc.description.abstract | Purpose This work has two related objectives. The first is to estimate the relative biological effectiveness of two radioactive heavy ion beams based on experimental measurements, and compare these to the relative biological effectiveness of corresponding stable isotopes to determine whether they are therapeutically equivalent. The second aim is to quantitatively compare the quality of images acquired postirradiation using an in‐beam whole‐body positron emission tomography scanner for range verification quality assurance. Methods The energy deposited by monoenergetic beams of C at 350 MeV/u, O at 250 MeV/u, C at 350 MeV/u, and O at 430 MeV/u was measured using a cruciform transmission ionization chamber in a water phantom at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. Dose‐mean lineal energy was measured at various depths along the path of each beam in a water phantom using a silicon‐on‐insulator mushroom microdosimeter. Using the modified microdosimetric kinetic model, the relative biological effectiveness at 10% survival fraction of the radioactive ion beams was evaluated and compared to that of the corresponding stable ions along the path of the beam. Finally, the postirradiation distributions of positron annihilations resulting from the decay of positron‐emitting nuclei were measured for each beam in a gelatin phantom using the in‐beam whole‐body positron emission tomography scanner at HIMAC. The depth of maximum positron‐annihilation density was compared with the depth of maximum dose deposition and the signal‐to‐background ratios were calculated and compared for images acquired over 5 and 20 min postirradiation of the phantom. Results In the entrance region, the was 1.2 ± 0.1 for both C and C beams, while for O and O it was 1.4 ± 0.1 and 1.3 ± 0.1, respectively. At the Bragg peak, the was 2.7 ± 0.4 for C and 2.9 ± 0.4 for C, while for O and O it was 2.7 ± 0.4 and 2.8 ± 0.4, respectively. In the tail region, could only be evaluated for carbon; the was 1.6 ± 0.2 and 1.5 ± 0.1 for C and C, respectively. Positron emission tomography images obtained from gelatin targets irradiated by radioactive ion beams exhibit markedly improved signal‐to‐background ratios compared to those obtained from targets irradiated by nonradioactive ion beams, with 5‐fold and 11‐fold increases in the ratios calculated for the O and C images compared with the values obtained for O and C, respectively. The difference between the depth of maximum dose and the depth of maximum positron annihilation density is 2.4 ± 0.8 mm for C, compared to −5.6 ± 0.8 mm for C and 0.9 ± 0.8 mm for O vs −6.6 ± 0.8 mm for O. Conclusions The values for C and O were found to be within the 95% confidence interval of the RBEs estimated for their corresponding stable isotopes across each of the regions in which it was evaluated. Furthermore, for a given dose, C and O beams produce much better quality images for range verification compared with C and O, in particular with regard to estimating the location of the Bragg peak. © 2024 American Association of Physicists in Medicine. | en_AU |
dc.description.sponsorship | This research has been conducted with the support of the Australian government research training program scholarship. The authors acknowledge the scientific assistance of the National Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at the Australian Nuclear Science and Technology Organisation (ANSTO). The authors acknowledge the long-term collaboration between the University of Wollongong’s Centre for Medical Radiation physics and Norway’s SINTEF research organization, where the silicon-on-insulator mushroom microdosimeters were fabricated. | en_AU |
dc.format.medium | Print-Electronic | en_AU |
dc.identifier.citation | Chacon, A., James, B., Tran, L., Guatelli, S., Chartier, L., Prokopvich (sic), D., Franklin, D. R., Mohammadi, A., Nishikido, F., Iwao, Y., Akamatsu, G., Takyu, S., Tashima, H., Yamaya, T., Parodi, K., Rosenfeld, A., & Safavi-Naeini, M. (2020). Experimental investigation of the characteristics of radioactive beams for heavy ion therapy. Medical Physics, 47(7), 3123-3132. doi:10.1002/mp.14177 | en_AU |
dc.identifier.issn | 0094-2405 | en_AU |
dc.identifier.issn | 2473-4209 | en_AU |
dc.identifier.issue | 7 | en_AU |
dc.identifier.journaltitle | Medical Physics | en_AU |
dc.identifier.pagination | 3123-3132 | en_AU |
dc.identifier.uri | https://doi.org/10.1002/mp.14177 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15804 | en_AU |
dc.identifier.volume | 47 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Wiley | en_AU |
dc.subject | Ions | en_AU |
dc.subject | Ion beams | en_AU |
dc.subject | Radioactivity | en_AU |
dc.subject | Biology | en_AU |
dc.subject | Isotopes | en_AU |
dc.subject | Images | en_AU |
dc.subject | Ionization | en_AU |
dc.subject | Medicine | en_AU |
dc.subject | Fragmentation | en_AU |
dc.subject | Heavy ions | en_AU |
dc.subject | Positron computed tomography | en_AU |
dc.title | Experimental investigation of the characteristics of radioactive beams for heavy ion therapy | en_AU |
dc.type | Journal Article | en_AU |
dcterms.dateAccepted | 2020-03-26 | en_AU |
Files
License bundle
1 - 1 of 1