Repository logo


Defect engineering toward binary spinel ZnCo2O4 for boosting electrocatalytic nitrate reduction to ammonia

dc.contributor.authorLai, QSen_AU
dc.contributor.authorLiu, ZMen_AU
dc.contributor.authorAkasa, Aen_AU
dc.contributor.authorZhao, XRen_AU
dc.contributor.authorWei, Ren_AU
dc.contributor.authorGao, XWen_AU
dc.contributor.authorAl Wafi, TMen_AU
dc.contributor.authorGu, QFen_AU
dc.contributor.authorLuo, WBen_AU
dc.date.accessioned2026-02-19T00:11:06Zen_AU
dc.date.issued2025-09-15en_AU
dc.date.statistics2026-02-18en_AU
dc.description.abstractElectrochemical nitrate reduction reaction (NO3 −RR) has a significant application potential for the electrochemical synthesis of ammonia at ambient temperature. Spinel oxides have garnered an extensive attention as effective electrocatalysts for NO3 −RR due to their flexible ion arrangements multiple oxidation states and high electrical conductivity. A defect-engineering approach using alkaline electrochemical etching on ZnCo2O4 electrocatalyst was employed to creat a mass of Zn vacancies in crystal lattice (VZn-ZnCo2O4). This not only induces lattice distortion, but also reduces the charge transfer resistance and optimizes the internal electron transportation. It achieved a maximum NH3 Faradaic efficiency (FENH3) of 94.5 % and NH3 yield rate of 2.79 mg h−1 cm−2 in 0.1 M NO3 −. Even in a dilute nitrate solution of 0.01 M NO3 −, the FENH3 still reaches a maximum of 91.74 % at −0.5 V, with an NH3 yield rate of 1.62 mg h−1 cm−2. Zn defects can accumulate abundant electrons in the highest occupied molecular orbital (HOMO) and shorten the CoO bond length with NO3 − adsorption, thereby promoting NO3 − adsorption. The surface Zn atomic defects suppress the HER and lower the energy barrier of the rate-determining step (RDS) from 0.44 eV to 0.24 eV, significantly enhancing the activity and selectivity of NO3 −RR. © 2025 Elsevier B.V.en_AU
dc.description.sponsorshipQ. Lai, and Z. Liu make an equal contribution to this work. This work was supported by the National Natural Science Foundation of China (Grant Nos. 52272194, 52305066). The authors extend their gratitude to Shiyanjia Lab (www.shiyanjia.com) for providing invaluable assistance with the XPS analysis. This manuscript was written through the contributions of all the authors. All authors have given approval to the final version of the manuscript.en_AU
dc.identifier.articlenumber166332en_AU
dc.identifier.citationLai, Q., Liu, Z., Akasa, A., Zhao, X., Wei, R., Gao, X.-W., Al Wafi, T. M., Gu, Q., & Luo, W.-B. (2025). Defect engineering toward binary spinel ZnCo2O4 for boosting electrocatalytic nitrate reduction to ammonia. Chemical Engineering Journal, 520, 166332. doi:10.1016/j.cej.2025.166332en_AU
dc.identifier.issn1385-8947en_AU
dc.identifier.journaltitleChemical Engineering Journalen_AU
dc.identifier.urihttps://doi.org/10.1016/j.cej.2025.166332en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/17071en_AU
dc.identifier.volume520en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectZincen_AU
dc.subjectCobalten_AU
dc.subjectElectrocatalystsen_AU
dc.subjectAmmoniaen_AU
dc.subjectElectronsen_AU
dc.subjectMolecular orbital methoden_AU
dc.subjectAdsorptionen_AU
dc.subjectElectron transferen_AU
dc.subjectNitratesen_AU
dc.subjectElectrochemistryen_AU
dc.subjectDefectsen_AU
dc.subjectReductionen_AU
dc.subjectSpinelsen_AU
dc.subjectEngineeringen_AU
dc.titleDefect engineering toward binary spinel ZnCo2O4 for boosting electrocatalytic nitrate reduction to ammoniaen_AU
dc.typeJournal Articleen_AU

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:

Collections