Nitrogen-rich molybdenum nitride synthesized in a crucible under air

dc.contributor.authorDemura, Men_AU
dc.contributor.authorNagao, Men_AU
dc.contributor.authorLee, CHen_AU
dc.contributor.authorGoto, Yen_AU
dc.contributor.authorNambu, Yen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorMasubuchi, Yen_AU
dc.contributor.authorMitsudome, Ten_AU
dc.contributor.authorSun, Wen_AU
dc.contributor.authorTadanaga, Ken_AU
dc.contributor.authorMiura, Aen_AU
dc.date.accessioned2024-12-06T00:14:24Zen_AU
dc.date.available2024-12-06T00:14:24Zen_AU
dc.date.issued2024-03-05en_AU
dc.date.statistics2024-11-28en_AU
dc.description.abstractThe triple bond in N2 is significantly stronger than the double bond in O2, meaning that synthesizing nitrogen-rich nitrides typically requires activated nitrogen precursors, such as ammonia, plasma-cracked atomic nitrogen, or high-pressure N2. Here, we report a synthesis of nitrogen-rich nitrides under ambient pressure and atmosphere. Using Na2MoO4 and dicyandiamide precursors, we synthesized nitrogen-rich γ-Mo2N3 in an alumina crucible under an ambient atmosphere, heated in a box furnace between 500 and 600 °C. Byproducts of this metathesis reaction include volatile gases and solid Na(OCN), which can be washed away with water. X-ray diffraction and neutron diffraction showed Mo2N3 with a rock salt structure having cation vacancies, with no oxygen incorporation, in contrast to the more common nitrogen-poor rock salt Mo2N with anion vacancies. Moreover, an increase in temperature to 700 °C resulted in molybdenum oxynitride, Mo0.84N0.72O0.27. This work illustrates the potential for dicyandiamide as an ambient-temperature metathesis precursor for an increased effective nitrogen chemical potential under ambient conditions. The classical experimental setting often used for solid-state oxide synthesis, therefore, has the potential to expand the nitride chemistry. © 2024 American Chemical Society.en_AU
dc.description.sponsorshipXPS was conducted at the Laboratory of XPS Analysis, Joint-Use Facilities, Hokkaido University, supported by “Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT): Proposal Number JPMXP1223HK0100. The experiment at HERMES was performed via proposal Nos. 22410 and 22809, and we acknowledge support from the Center of Neutron Science for Advanced Materials, Institute for Materials Research, Tohoku University.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationDemura, M., Nagao, M., Lee, C.-H., Goto, Y., Nambu, Y., Avdeev, M., Masubuchi, Y., Mitsudome, T., Sun, W., Tadanaga, K., & Miura, A. (2024). Nitrogen-rich molybdenum nitride synthesized in a crucible under air. Inorganic Chemistry, 63(11), 4989-4996. doi:10.1021/acs.inorgchem.3c04345en_AU
dc.identifier.issn0020-1669en_AU
dc.identifier.issn1520-510Xen_AU
dc.identifier.issue11en_AU
dc.identifier.journaltitleInorganic Chemistryen_AU
dc.identifier.pagination4989-4996en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.inorgchem.3c04345en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15799en_AU
dc.identifier.volume63en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectNitrogenen_AU
dc.subjectMolybdenumen_AU
dc.subjectNitridesen_AU
dc.subjectSynthesisen_AU
dc.subjectCruciblesen_AU
dc.subjectAiren_AU
dc.subjectAmmoniaen_AU
dc.subjectAtmospheresen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectOxygenen_AU
dc.subjectOxidesen_AU
dc.subjectChemistryen_AU
dc.subjectDiffractionen_AU
dc.subjectSaltsen_AU
dc.titleNitrogen-rich molybdenum nitride synthesized in a crucible under airen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ic3c04345_si_001.pdf
Size:
294.12 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections