Identifying migration channels and bottlenecks in monoclinic NASICON‐type solid electrolytes with hierarchical ion‐transport algorithms

dc.contributor.authorZou, Zen_AU
dc.contributor.authorMa, Nen_AU
dc.contributor.authorWang, APen_AU
dc.contributor.authorRan, YBen_AU
dc.contributor.authorSong, Ten_AU
dc.contributor.authorHe, Ben_AU
dc.contributor.authorYe, AJen_AU
dc.contributor.authorMi, PHen_AU
dc.contributor.authorZhang, LWen_AU
dc.contributor.authorZhou, Hen_AU
dc.contributor.authorJiao, Yen_AU
dc.contributor.authorLiu, JPen_AU
dc.contributor.authorWang, Den_AU
dc.contributor.authorLi, YJen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorShi, SQen_AU
dc.date.accessioned2025-01-09T21:25:01Zen_AU
dc.date.available2025-01-09T21:25:01Zen_AU
dc.date.issued2021-09-07en_AU
dc.date.statistics2024-07-04en_AU
dc.description.abstractMonoclinic natrium superionic conductors (NASICON; Na3Zr2Si2PO12) are well‐known Na‐ion solid electrolytes which have been studied for 40 years. However, due to the low symmetry of the crystal structure, identifying the migration channels of monoclinic NASICON accurately still remains unsolved. Here, a cross‐verified study of Na+ diffusion pathways in monoclinic NASICON by integrating geometric analysis of channels and bottlenecks, bond‐valence energy landscapes analysis, and ab initio molecular dynamics simulations is presented. The diffusion limiting bottlenecks, the anisotropy of conductivity, and the time and temperature dependence of Na+ distribution over the channels are characterized and strategies for improving both bulk and total conductivity of monoclinic NASICON‐type solid electrolytes are proposed. This set of hierarchical ion‐transport algorithms not only shows the efficiency and practicality in revealing the ion transport behavior in monoclinic NASICON‐type materials but also provides guidelines for optimizing their conductive properties that can be readily extended to other solid electrolytes. © 1999-2024 John Wiley & Sons, Inc.en_AU
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (Grant Nos. 11874254, 52102313, 51802187, U1630134, and 51622207), Shanghai Sailing Program (No. 18YF1408700), Shanghai Pujiang Program (No. 2019PJD016), Open Project of the State Key Laboratory of Advanced Special Steel, Shanghai University, China (No. SKLASS2018-01), the Project of the State Key Laboratory of Advanced Special Steel, Shanghai University, China (No. SKLASS2019-Z023), the Science and Technology Commission of Shanghai Municipality (No. 19DZ2270200) and the Hunan Innovation Team (No. 2018RS3091). The authors appreciate the High Performance Computing Center of Shanghai University, and Shanghai Engineering Research Center of Intelligent Computing System (No. 19DZ2252600) for providing the computing resources and technical support.en_AU
dc.identifier.citationZou, Z., Ma, N., Wang, A., Ran, Y., Song, T., He, B., Ye, A., Mi, P., Zhang, L., Zhou, H., Jiao, Y., Liu, J., Wang, D., Li, Y., Avdeev, M., & Shi, S. (2021). Identifying migration channels and bottlenecks in monoclinic NASICON‐type solid electrolytes with hierarchical ion‐transport algorithms. Advanced Functional Materials, 31(49), 2107747. doi:10.1002/adfm.202107747en_AU
dc.identifier.issn1616-301Xen_AU
dc.identifier.issn1616-3028en_AU
dc.identifier.issue49en_AU
dc.identifier.journaltitleAdvanced Functional Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/adfm.202107747en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15875en_AU
dc.identifier.volume31en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectMigrationen_AU
dc.subjectSolid Electrolytesen_AU
dc.subjectAlgorithmsen_AU
dc.subjectCrystal structureen_AU
dc.subjectDiffusionen_AU
dc.subjectMolecular dynamics methoden_AU
dc.subjectTemperature dependenceen_AU
dc.subjectSodiumen_AU
dc.subjectZirconiumen_AU
dc.subjectSiliconen_AU
dc.titleIdentifying migration channels and bottlenecks in monoclinic NASICON‐type solid electrolytes with hierarchical ion‐transport algorithmsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections