Silver iodide sodalite – wasteform / HIP canister interactions and aqueous durability

dc.contributor.authorMaddrell, ERen_AU
dc.contributor.authorVance, ERen_AU
dc.contributor.authorGrant, Cen_AU
dc.contributor.authorAly, Zen_AU
dc.contributor.authorStopic, Aen_AU
dc.contributor.authorPalmer, Ten_AU
dc.contributor.authorHarrison, JJen_AU
dc.contributor.authorGregg, DJen_AU
dc.date.accessioned2022-12-02T05:11:03Zen_AU
dc.date.available2022-12-02T05:11:03Zen_AU
dc.date.issued2019-04-15en_AU
dc.date.statistics2022-11-02en_AU
dc.description.abstractThe use of silver zeolite for the capture of radioiodine from the vapour phase, followed by thermal conversion now appears to be the most direct route by which a sodalite wasteform can be formed. In addition, consolidation by hot-isostatic pressing (HIP) in sealed canisters has many significant advantages over conventional methods such as sintering or melting these candidate wasteforms. The choice of HIP canister material is important as reaction at the wasteform/HIP canister interface results in an interaction zone that can potentially produce detrimental phases, wasteform porosity and canister thinning. This paper builds on a previous study that demonstrated that iodine could be captured from the vapour phase using silver exchanged zeolite and converted to sodalite by HIPing in Fe HIP canisters. The Cu or Ni metal HIP canisters used in this work result in an ∼100–200 μm thick local interaction zone with a variety of chemistries. Durability studies were conducted using a variety of reducing conditions and clearly demonstrated the redox sensitivity of silver sodalite. While the silver sodalite wasteform produced is, like the popular AgI-based wasteforms, highly leach resistant to leaching by deionised water it was unstable under highly reducing conditions, which are likely to occur in most geological disposal facilities. Post leaching characterisation revealed the redeposition of AgI and the formation of an aluminosilicate alteration layer under some leaching conditions. Appropriate precautions are required should a silver sodalite wasteform for iodine immobilisation be exposed to reducing groundwater conditions. Crown Copyright © 2019 Published by Elsevier B.V.en_AU
dc.identifier.citationMaddrell, E. R., Vance, E. R., Grant, C., Aly, Z., Stopic, A., Palmer, T., Harrison, J. J. & Gregg, D. J. (2019). Silver iodide sodalite–Wasteform/HIP canister interactions and aqueous durability. Journal of Nuclear Materials, 517, 71-79. doi:10.1016/j.jnucmat.2019.02.002en_AU
dc.identifier.issn0022-3115en_AU
dc.identifier.journaltitleJournal of Nuclear Materialsen_AU
dc.identifier.pagination71-79en_AU
dc.identifier.urihttps://doi.org/10.1016/j.jnucmat.2019.02.002en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14137en_AU
dc.identifier.volume517en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectSilver iodidesen_AU
dc.subjectZeolitesen_AU
dc.subjectWaste formsen_AU
dc.subjectContainersen_AU
dc.subjectHot pressingen_AU
dc.subjectDurabilityen_AU
dc.subjectGround wateren_AU
dc.subjectLeachingen_AU
dc.titleSilver iodide sodalite – wasteform / HIP canister interactions and aqueous durabilityen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0022311518315022-mainJJH.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections