The origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries
dc.contributor.author | Wang, AP | en_AU |
dc.contributor.author | Wu, XH | en_AU |
dc.contributor.author | Zou, Z | en_AU |
dc.contributor.author | Qiao, Y | en_AU |
dc.contributor.author | Wang, D | en_AU |
dc.contributor.author | Xing, L | en_AU |
dc.contributor.author | Chen, Y | en_AU |
dc.contributor.author | Lin, Y | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Shi, SQ | en_AU |
dc.date.accessioned | 2024-03-01T00:22:14Z | en_AU |
dc.date.available | 2024-03-01T00:22:14Z | en_AU |
dc.date.issued | 2023-03-27 | en_AU |
dc.date.statistics | 2024-03-01 | en_AU |
dc.description.abstract | LiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li‐O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI‐added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr‐added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li‐O2 batteries. © 1999-2024 John Wiley & Sons, Inc | en_AU |
dc.description.sponsorship | We would like to thank Prof. Jun Cheng for fruitful discussions. This work was financially supported by the National Natural Science Foundation of China (Nos. U2030206, 11874254, 52102313), Natural Science Foundation of Shanghai (22ZR1424500), Shanghai Sailing Program (No. 18YF1408700), Shanghai Pujiang Program (No. 2019PJD016). We appreciate the High-Performance Computing Center of Shanghai University, and Shanghai Engineering Research Center of Intelligent Computing System (No. 19DZ2252600) for providing the computing resources and technical support. | en_AU |
dc.identifier.citation | Wang, A., Wu, X., Zou, Z., Qiao, Y., Wang, D., Xing, L., Chen, Y., Lin, Y., Avdeev, M., & Shi, S. (2023). The origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries. Angewandte Chemie International Edition, 62(14), e202217354. doi:10.1002/anie.202217354 | en_AU |
dc.identifier.issn | 0044-8249 | en_AU |
dc.identifier.issn | 1521-3757 | en_AU |
dc.identifier.issue | 14 | en_AU |
dc.identifier.journaltitle | Angewandte Chemie | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1002/ange.202217354 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15513 | en_AU |
dc.identifier.volume | 135 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Wiley | en_AU |
dc.subject | Lithium ion batteries | en_AU |
dc.subject | Electrolytes | en_AU |
dc.subject | Oxygen | en_AU |
dc.subject | Redox process | en_AU |
dc.subject | Solvents | en_AU |
dc.subject | Kinetics | en_AU |
dc.title | The origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1