The origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries

dc.contributor.authorWang, APen_AU
dc.contributor.authorWu, XHen_AU
dc.contributor.authorZou, Zen_AU
dc.contributor.authorQiao, Yen_AU
dc.contributor.authorWang, Den_AU
dc.contributor.authorXing, Len_AU
dc.contributor.authorChen, Yen_AU
dc.contributor.authorLin, Yen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorShi, SQen_AU
dc.date.accessioned2024-03-01T00:22:14Zen_AU
dc.date.available2024-03-01T00:22:14Zen_AU
dc.date.issued2023-03-27en_AU
dc.date.statistics2024-03-01en_AU
dc.description.abstractLiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li‐O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI‐added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr‐added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li‐O2 batteries. © 1999-2024 John Wiley & Sons, Incen_AU
dc.description.sponsorshipWe would like to thank Prof. Jun Cheng for fruitful discussions. This work was financially supported by the National Natural Science Foundation of China (Nos. U2030206, 11874254, 52102313), Natural Science Foundation of Shanghai (22ZR1424500), Shanghai Sailing Program (No. 18YF1408700), Shanghai Pujiang Program (No. 2019PJD016). We appreciate the High-Performance Computing Center of Shanghai University, and Shanghai Engineering Research Center of Intelligent Computing System (No. 19DZ2252600) for providing the computing resources and technical support.en_AU
dc.identifier.citationWang, A., Wu, X., Zou, Z., Qiao, Y., Wang, D., Xing, L., Chen, Y., Lin, Y., Avdeev, M., & Shi, S. (2023). The origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries. Angewandte Chemie International Edition, 62(14), e202217354. doi:10.1002/anie.202217354en_AU
dc.identifier.issn0044-8249en_AU
dc.identifier.issn1521-3757en_AU
dc.identifier.issue14en_AU
dc.identifier.journaltitleAngewandte Chemieen_AU
dc.identifier.urihttp://dx.doi.org/10.1002/ange.202217354en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15513en_AU
dc.identifier.volume135en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectLithium ion batteriesen_AU
dc.subjectElectrolytesen_AU
dc.subjectOxygenen_AU
dc.subjectRedox processen_AU
dc.subjectSolventsen_AU
dc.subjectKineticsen_AU
dc.titleThe origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections