Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution

dc.contributor.authorlorem, Ipsumen_AU
dc.contributor.authorWang, Qen_AU
dc.contributor.authorMariyappan, Sen_AU
dc.contributor.authorRousse, Gen_AU
dc.contributor.authorMorozov, AVen_AU
dc.contributor.authorPorcheron, Ben_AU
dc.contributor.authorDedryvère, Ren_AU
dc.contributor.authorWu, JPen_AU
dc.contributor.authorYang, WLen_AU
dc.contributor.authorZhang, LTen_AU
dc.contributor.authorChakir, Men_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorDeschamps, Men_AU
dc.contributor.authorYu, YSen_AU
dc.contributor.authorCabana, Jen_AU
dc.contributor.authorDoublet, MLen_AU
dc.contributor.authorAbakumov, AMen_AU
dc.contributor.authorTarascon, JMen_AU
dc.date.accessioned2021-09-22T00:17:34Zen_AU
dc.date.available2021-09-22T00:17:34Zen_AU
dc.date.issued2021-01-11en_AU
dc.date.statistics2021-09-20en_AU
dc.description.abstractSodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLi1/3Mn2/3O2 phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry. This phase shows a sustained reversible capacity of 190 mAh g−1 that is rooted in cumulative oxygen and manganese redox processes as deduced by combined spectroscopy techniques. Unlike many other anionic redox layered oxides so far reported, O3-NaLi1/3Mn2/3O2 electrodes do not show discernible voltage fade on cycling. This finding, rationalized by density functional theory, sheds light on the role of inter- versus intralayer 3d cationic migration in ruling voltage fade in anionic redox electrodes. Another practical asset of this material stems from its moisture stability, hence facilitating its handling and electrode processing. Overall, this work offers future directions towards designing highly performing sodium electrodes for advanced Na-ion batteries. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.en_AU
dc.identifier.citationWang, Q., Mariyappan, S., Rousse, G., Morozov, A. V., Porcheron, B., Dedryvère, R., Wu, J., Yang, W., Zhang, L., Chakir, M., Avdeev, M., Deschamps, M., Yu, Y.-S., Cabana, J., Doublet, M.-L., Abakumov, A. M., & Tarascon, J. M. (2021). Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nature Materials, 20, 353–361. doi:10.1038/s41563-020-00870-8en_AU
dc.identifier.issn1476-4660en_AU
dc.identifier.journaltitleNature Materialsen_AU
dc.identifier.pagination353-361en_AU
dc.identifier.urihttps://doi.org/10.1038/s41563-020-00870-8en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11778en_AU
dc.identifier.volume20en_AU
dc.language.isoenen_AU
dc.publisherSpringer Natureen_AU
dc.subjectElectric batteriesen_AU
dc.subjectSpectroscopyen_AU
dc.subjectRedox reactionsen_AU
dc.subjectElectrodesen_AU
dc.subjectCeramicsen_AU
dc.subjectOxygenen_AU
dc.subjectManganeseen_AU
dc.subjectSodiumen_AU
dc.titleUnlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitutionen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41563-020-00870-8.pdf
Size:
3.56 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections