Repository logo


Multiphase riveting structure for high power and long lifespan potassium‐ion batteries

dc.contributor.authorLiu, ZDen_AU
dc.contributor.authorGao, XWen_AU
dc.contributor.authorMu, JJen_AU
dc.contributor.authorChen, Hen_AU
dc.contributor.authorGao, GPen_AU
dc.contributor.authorLai, QSen_AU
dc.contributor.authorYang, DRen_AU
dc.contributor.authorGu, QFen_AU
dc.contributor.authorLuo, WBen_AU
dc.date.accessioned2026-02-19T03:33:06Zen_AU
dc.date.issued2024-02-26en_AU
dc.date.statistics2026-02-18en_AU
dc.description.abstractThe development of potassium‐ion batteries (KIBs) relies on the exploration of stable layer‐structured oxide cathode materials and a comprehensive understanding of ion storage and diffusion behaviors. A multiphase riveting‐structured O3/P2/P3‐Na 0.9 [Ni 0.3 Mn 0.55 Cu 0.1 Ti 0.05 ]O 2 (Tri‐NMCT) is employed as cathode material for KIBs. It demonstrates an initial discharge specific capacity of 108 mA g −1 at current density of 15 mA g −1 in the voltage range of 1.5–4 V. Excellent cyclic stability is exhibited as well with a high 83% capacity retention after 600 cycles at a higher current density of 300 mA g −1 . Based on the in‐situ XRD, it reveals that the P2 phase offers a more stable triangular prism site compared to the O3 phase. This stability inhibits the undesired phase transition from P3 to O3 during discharge, thereby ensuring the long‐term cyclic performance. Furthermore, Density of state (DOS) calculations and migration barrier analyses indicate a preferential migration of K + ions to the P2 phase due to the lower Fermi level. This observation elucidates the structural preservation of the P3 phase during K + embedding. Overall, this work sheds light on Tri‐NMCT as a promising cathode material for advanced KIBs. © 1999-2026 John Wiley & Sons, Inc or related companies.en_AU
dc.identifier.articlenumber2315006en_AU
dc.identifier.citationLiu, Z.-D., Gao, X.-W., Mu, J.-J., Chen, H., Gao, G., Lai, Q.-S., Yang, D.-R., Gu, Q.-F., & Luo, W.-B. (2024). Multiphase riveting structure for high power and long lifespan potassium‐ion batteries. Advanced Functional Materials, 34(26), 2315006. doi:10.1002/adfm.202315006en_AU
dc.identifier.issn1616-301Xen_AU
dc.identifier.issn1616-3028en_AU
dc.identifier.issue26en_AU
dc.identifier.journaltitleAdvanced Functional Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/adfm.202315006en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/17078en_AU
dc.identifier.volume34en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectPotassiumen_AU
dc.subjectSodiumen_AU
dc.subjectNickelen_AU
dc.subjectManganeseen_AU
dc.subjectCathodesen_AU
dc.subjectPrismsen_AU
dc.subjectCopperen_AU
dc.subjectMaterialsen_AU
dc.subjectOxidesen_AU
dc.subjectDiffusionen_AU
dc.subjectStorageen_AU
dc.titleMultiphase riveting structure for high power and long lifespan potassium‐ion batteriesen_AU
dc.typeJournal Articleen_AU

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:

Collections