Synthetic pathway determines the nonequilibrium crystallography of Li- and Mn-rich layered oxide cathode materials

dc.contributor.authorMenon, ASen_AU
dc.contributor.authorUlusoy, Sen_AU
dc.contributor.authorOjwang, DOen_AU
dc.contributor.authorRiekehr, Len_AU
dc.contributor.authorDidier, Cen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorSalazar-Alvarez, Gen_AU
dc.contributor.authorSvedlindh, Pen_AU
dc.contributor.authorEdström, Ken_AU
dc.contributor.authorGomez, CPen_AU
dc.contributor.authorBrant, WRen_AU
dc.date.accessioned2021-08-09T05:26:06Zen_AU
dc.date.available2021-08-09T05:26:06Zen_AU
dc.date.issued2021-02-10en_AU
dc.date.statistics2021-08-05en_AU
dc.descriptionMade available through a Creative Commons CC-BY License.en_AU
dc.description.abstractLi- and Mn-rich layered oxides show significant promise as electrode materials for future Li-ion batteries. However, an accurate description of its crystallography remains elusive, with both single-phase solid solution and multiphase structures being proposed for high performing materials such as Li1.2Mn0.54Ni0.13Co0.13O2. Herein, we report the synthesis of single- and multiphase variants of this material through sol–gel and solid-state methods, respectively, and demonstrate that its crystallography is a direct consequence of the synthetic route and not necessarily an inherent property of the composition, as previously argued. This was accomplished via complementary techniques that probe the bulk and local structure followed by in situ methods to map the synthetic progression. As the electrochemical performance and anionic redox behavior are often rationalized on the basis of the presumed crystal structure, clarifying the structural ambiguities is an important step toward harnessing its potential as an electrode material. Copyright © 2021 The Authors. Published by American Chemical Society.en_AU
dc.identifier.citationMenon, A. S., Ulusoy, S., Ojwang, D. O., Riekehr, L., Didier, C., Peterson, V. K., Salazar-Alvarez, G., Svedlindh, P., Edström, K., Gomez, C. P. & Brant, W. R. (2021). Synthetic pathway determines the nonequilibrium crystallography of Li- and Mn-rich layered oxide cathode materials . ACS Applied Energy Materials, 4(2), 1924-1935. doi:10.1021/acsaem.0c03027en_AU
dc.identifier.issn2574-0962en_AU
dc.identifier.issue2en_AU
dc.identifier.journaltitleACS Applied Energy Materialsen_AU
dc.identifier.pagination1924-1935en_AU
dc.identifier.urihttps://doi.org/10.1021/acsaem.0c03027en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11273en_AU
dc.identifier.volume4en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectPrecursoren_AU
dc.subjectPhysical chemistryen_AU
dc.subjectChemical physicsen_AU
dc.subjectCrystallographyen_AU
dc.subjectLithiumen_AU
dc.subjectManganeseen_AU
dc.subjectCathodesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectSol-gel processen_AU
dc.subjectMaterialsen_AU
dc.titleSynthetic pathway determines the nonequilibrium crystallography of Li- and Mn-rich layered oxide cathode materialsen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsaem.0c03027.pdf
Size:
5.33 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections