Fe Site order and magnetic properties of Fe1/4NbS2

dc.contributor.authorLawrence, EAen_AU
dc.contributor.authorHuai, XDen_AU
dc.contributor.authorKim, DWen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorChen, Yen_AU
dc.contributor.authorSkorupskii, Gen_AU
dc.contributor.authorMiura, Aen_AU
dc.contributor.authorFerrenti, Aen_AU
dc.contributor.authorWaibel, Men_AU
dc.contributor.authorKawaguchi, Sen_AU
dc.contributor.authorNg, Nen_AU
dc.contributor.authorKaman, Ben_AU
dc.contributor.authorCai, Zen_AU
dc.contributor.authorSchoop, Len_AU
dc.contributor.authorKushwaha, Sen_AU
dc.contributor.authorLiu, Fen_AU
dc.contributor.authorTran, TTen_AU
dc.contributor.authorJi, Hen_AU
dc.date.accessioned2024-09-19T04:14:42Zen_AU
dc.date.available2024-09-19T04:14:42Zen_AU
dc.date.issued2023-11-06en_AU
dc.date.statistics2024-07-31en_AU
dc.description.abstractTransition-metal dichalcogenides (TMDs) have long been attractive to researchers for their diverse properties and high degree of tunability. Most recently, interest in magnetically intercalated TMDs has resurged due to their potential applications in spintronic devices. While certain compositions featuring the absence of inversion symmetry such as Fe1/3NbS2 and Cr1/3NbS2 have garnered the most attention, the diverse compositional space afforded through the host matrix composition as well as intercalant identity and concentration is large and remains relatively underexplored. Here, we report the magnetic ground state of Fe1/4NbS2 that was determined from low-temperature neutron powder diffraction as an A-type antiferromagnet. Despite the presence of overall inversion symmetry, the pristine compound manifests spin polarization induced by the antiferromagnetic order at generic k points, based on density functional theory band-structure calculations. Furthermore, by combining synchrotron diffraction, pair distribution function, and magnetic susceptibility measurements, we find that the magnetic properties of Fe1/4NbS2 are sensitive to the Fe site order, which can be tuned via electrochemical lithiation and thermal history. © 2023 American Chemical Society.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationLawrence, E. A., Huai, X., Kim, D., Avdeev, M., Chen, Y., Skorupskii, G., Miura, A., Ferrenti, A., Waibel, M., Kawaguchi, S., Ng, N., Kaman, B., Cai, Z., Schoop, L., Kushwaha, S., Liu, F., Tran, T. T., & Ji, H. (2023). Fe Site order and magnetic properties of Fe1/4NbS2. Inorganic Chemistry, 62(44), 18179-18188. doi:10.1021/acs.inorgchem.3c02652en_AU
dc.identifier.issn0020-1669en_AU
dc.identifier.issn1520-510Xen_AU
dc.identifier.issue44en_AU
dc.identifier.journaltitleInorganic Chemistryen_AU
dc.identifier.pagination18179-18188en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.inorgchem.3c02652en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15683en_AU
dc.identifier.volume62en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Society (ACS)en_AU
dc.subjectMagnetic propertiesen_AU
dc.subjectIronen_AU
dc.subjectNiobiumen_AU
dc.subjectChromiumen_AU
dc.subjectTemperature rangeen_AU
dc.subjectNeutronsen_AU
dc.subjectAntiferromagnetismen_AU
dc.subjectSynchrotronsen_AU
dc.subjectElectrochemistryen_AU
dc.titleFe Site order and magnetic properties of Fe1/4NbS2en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections