Strain-induced magnetic phase transition in SrCoO3 thin films

dc.contributor.authorCallori, SJen_AU
dc.contributor.authorHu, Sen_AU
dc.contributor.authorBertinshaw, Jen_AU
dc.contributor.authorYue, ZJen_AU
dc.contributor.authorDanilkin, SAen_AU
dc.contributor.authorWang, XLen_AU
dc.contributor.authorNagarajan, Ven_AU
dc.contributor.authorKlose, Fen_AU
dc.contributor.authorSeidel, Jen_AU
dc.contributor.authorUlrich, Cen_AU
dc.date.accessioned2021-08-13T03:45:37Zen_AU
dc.date.available2021-08-13T03:45:37Zen_AU
dc.date.issued2015-02-06en_AU
dc.date.statistics2021-08-12en_AU
dc.description.abstractTransition metal oxides represent a wide set of materials with a broad range of functionalities, including superconductivity, magnetism, and ferroelectricity, which can be tuned by the careful choice of parameters such as strain, oxygen content, and applied electric or magnetic fields. This tunability makes them ideal candidate materials for use in developing novel information and energy technologies. SrCoO3 provides a particularly interesting system for these investigations. Lee and Rabe have simulated the effect of strain and have predicted that the magnetic state can be tuned through compressive or tensile strain with a ferromagnetic-antiferromagnetic phase transition. Such a phase transition would be accompanied by a metal-to-insulator phase transition and a transition to a ferroelectric polarised state. We have achieved large in-plane tensile strain in SrCoO3 thin films through the proper choice of substrate and our neutron diffraction experiments on only 40 nm thick films have indeed confirmed the transition from a ferromagnetic to an antiferromagnetic ground state, as theoretically predicted. As such, SrCoO3 would constitute a new class of multiferroic material where magnetic and electric polarisations can be driven through external strain.en_AU
dc.identifier.citationCallori, S. J., Hu, S., Bertinshaw, J., Yue, Z., Danilkin, S., Wang, X. L., Nagarajan, V., Klose, F., Seidel, J., Ulrich, C. (2015). Strain-induced magnetic phase transition in SrCoO3 thin films. Paper presented at the 39th Annual Condensed Matter and Materials Meeting, Charles Sturt University, Wagga Wagga, NSW, 3 February 2015 - 6 February 2015, (pp. 91). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdfen_AU
dc.identifier.conferenceenddate6 February 2015en_AU
dc.identifier.conferencename39th Annual Condensed Matter and Materials Meetingen_AU
dc.identifier.conferenceplaceWagga Wagga, NSWen_AU
dc.identifier.conferencestartdate3 February 2015en_AU
dc.identifier.isbn978-0-646-96433-1en_AU
dc.identifier.pagination91en_AU
dc.identifier.urihttps://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdfen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11351en_AU
dc.language.isoenen_AU
dc.publisherAustralian Institute of Physicsen_AU
dc.subjectAntiferromagnetismen_AU
dc.subjectFerromagnetismen_AU
dc.subjectGround statesen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectPerovskiteen_AU
dc.subjectPhase transformationsen_AU
dc.subjectPolarizationen_AU
dc.subjectStrainsen_AU
dc.subjectSubstratesen_AU
dc.subjectTensile propertiesen_AU
dc.subjectThin filmsen_AU
dc.titleStrain-induced magnetic phase transition in SrCoO3 thin filmsen_AU
dc.typeConference Abstracten_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wagga2015_10_Handbook(1).pdf
Size:
38.6 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: