Correlated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes

dc.contributor.authorZhang, ZZen_AU
dc.contributor.authorZou, Zen_AU
dc.contributor.authorKaup, Ken_AU
dc.contributor.authorXiao, RJen_AU
dc.contributor.authorShi, Sen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorHu, YSen_AU
dc.contributor.authorWang, Den_AU
dc.contributor.authorHe, Ben_AU
dc.contributor.authorLi, Hen_AU
dc.contributor.authorHuang, XYen_AU
dc.contributor.authorNazar, LFen_AU
dc.contributor.authorChen, LQen_AU
dc.date.accessioned2021-01-18T22:41:41Zen_AU
dc.date.available2021-01-18T22:41:41Zen_AU
dc.date.issued2019-10-01en_AU
dc.date.statistics2021-01-11en_AU
dc.description.abstractNa super ion conductor (NaSICON), Na1+nZr2SinP3–nO12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na3Zr2Si2PO12 is unveiled. It is revealed that Na+‐ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single‐ion migration barrier. Furthermore, computational work uncovers the origin of the improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na+‐ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σbulk = 4.0 mS cm−1, σtotal = 2.4 mS cm−1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30–3.55 mol formula unit−1. These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na+‐ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration. © 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheimen_AU
dc.identifier.articlenumber1902373en_AU
dc.identifier.citationZhang, Z., Zou, Z., Kaup, K., Xiao, R., Shi, S., Avdeev, M., Hu, Y. S., Wang, D., He, B., Li, H., Huang, X., Nazar, L. F., & Chen, L. (2019) Correlated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes. Advanced Energy Materials, 9(42), 1902373. doi:10.1002/aenm.201902373en_AU
dc.identifier.issn1614-6840en_AU
dc.identifier.issue42en_AU
dc.identifier.journaltitleAdvanced Energy Materialsen_AU
dc.identifier.urihttps://doi.org/10.1002/aenm.201902373en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10254en_AU
dc.identifier.volume9en_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectCorrelated-particle modelsen_AU
dc.subjectCharged particlesen_AU
dc.subjectSolid electrolytesen_AU
dc.subjectMonoclinic latticesen_AU
dc.subjectCationsen_AU
dc.subjectDoped materialsen_AU
dc.titleCorrelated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections