Structural evolution of NASICON-type Li1+xAlxGe2−x(PO4)3 using in situ synchrotron x-ray powder diffraction

dc.contributor.authorSafanama, Den_AU
dc.contributor.authorSharma, Nen_AU
dc.contributor.authorRao, RPen_AU
dc.contributor.authorBrand, HEAen_AU
dc.contributor.authorAdams, Sen_AU
dc.date.accessioned2021-12-07T22:07:43Zen_AU
dc.date.available2021-12-07T22:07:43Zen_AU
dc.date.issued2016-04-04en_AU
dc.date.statistics2021-11-11en_AU
dc.descriptionThe postprint version of this article is attached.en_AU
dc.description.abstractFast Li-ion conducting Li1+xAlxGe2-x(PO4)3 or LAGP ceramics are the most commonly used anode-protecting membranes in new generation Li-air batteries. The electrochemical properties of this solid membrane (electrolyte) are highly dependent on the purity of the phase and the actual amount of Al incorporated into the structure which often deviates from the synthetic inputs for different annealing conditions. Hence, optimizing the annealing temperature range is of great importance to achieve desirable phases and therefore optimized properties. Here in situ synchrotron X-ray diffraction is carried out during the synthesis of LAGP. Starting with ball-milled and calcined LAGP glass powders we observe the structural evolution during the glass to ceramic transition. Sequential Rietveld refinements show that the dominant Al-poor LGP phase transforms into an Al-incorporated LAGP structure at temperatures higher than 800 °C. The c lattice parameter is found to be highly dependent on the temperature and also the amount of Al incorporated into the structure. The relationship between the c lattice parameter and Al concentration in LAGP is evaluated and the correlation can be used to allow the estimation of Al doping. Thus this work allows the lattice parameter to "fingerprint" the dopant concentration. © 2016 The Royal Society of Chemistry.en_AU
dc.description.sponsorshipThis research was supported by the National Research Foundation, Prime Minister's Office, Singapore under its Competitive Research Programme (CRP Awards NRF-CRP 10-2012-6 and NRF-CRP 8-2011-4). NS would like to thank AINSE Ltd for providing support through the research fellowship scheme and the Australian Research Council (DE160100237). Part of this research was carried out on the Powder Diffraction beamline at the Australian Synchrotron, Victoria, Australia.en_AU
dc.identifier.citationSafanama, D., Sharma, N., Rao, R. P., Brand, H. E. A. & Adams, S. (2016). Structural evolution of NASICON-type Li 1+ x Al x Ge 2− x (PO 4) 3 using in situ synchrotron x-ray powder diffraction. Journal of Materials Chemistry A, 4(20), 7718-7726. doi:10.1039/C6TA00402Den_AU
dc.identifier.issn2050-7488en_AU
dc.identifier.issue20en_AU
dc.identifier.journaltitleJournal of Materials Chemistry Aen_AU
dc.identifier.pagination7718-7726en_AU
dc.identifier.urihttps://doi.org/10.1039/C6TA00402Den_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12380en_AU
dc.identifier.volume4en_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectCeramicsen_AU
dc.subjectGlassen_AU
dc.subjectGermaniumen_AU
dc.subjectPhase transformationsen_AU
dc.subjectElectrolytesen_AU
dc.subjectLithiumen_AU
dc.titleStructural evolution of NASICON-type Li1+xAlxGe2−x(PO4)3 using in situ synchrotron x-ray powder diffractionen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
C6TA00402D.pdf
Size:
2.52 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections