Iron oxide-palladium core-shell nanospheres for ferromagnetic resonance-based hydrogen gas sensing

dc.contributor.authorKhan, Sen_AU
dc.contributor.authorLawler, NBen_AU
dc.contributor.authorBake, Aen_AU
dc.contributor.authorRahman, Ren_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorIyer, KSen_AU
dc.contributor.authorMartyniuk, Men_AU
dc.contributor.authorKostylev, Men_AU
dc.date.accessioned2024-12-19T21:42:38Zen_AU
dc.date.available2024-12-19T21:42:38Zen_AU
dc.date.issued2022-02-08en_AU
dc.date.statistics2024-05-28en_AU
dc.description.abstractInterfaces of ferromagnetic transition metals such as Iron, Cobalt, and Nickel with non-magnetic palladium are of interest due to their unique magnetic and spintronic properties. These interfaces enable ferromagnetic resonance (FMR) based sensing of hydrogen gas. In the present work, we synthesized Fe3O4–Pd core-shell nanospheres via a one-pot synthesis method using the thermal decomposition of Fe3+ acetylacetonate in the presence of a reducing agent to produce the Fe3O4 core, followed by the reduction of a Pd2+ precursor to form the pure Pd shell. We found that our in-situ synthesized core-shell nanostructure is magnetically active and shows excellent H2 gas sensing properties. The effect of reversible hydrogen gas absorption on the magnetism of Fe3O4–Pd core-shell nanospheres was investigated. The hydrogen-induced ferromagnetic-resonance (FMR) peak shift amounted to 30% of the peak linewidth for the virgin state of the sample. In addition, in the presence of hydrogen gas, we observed a fully reversible decrease in the FMR peak linewidth by about two times. This was accompanied by a nearly doubling of the FMR peak height. Response and recovery times of about 2 and 50 s, respectively, were extracted from the measurements. All the data was collected using a mix of just 3% hydrogen in a nitrogen carrier gas. © 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd.en_AU
dc.identifier.citationKhan, S., Lawler, N. B., Bake, A., Rahman, R., Cortie, D., Iyer, K. S., Martyniuk, M., & Kostylev, M. (2022). Iron oxide-palladium core-shell nanospheres for ferromagnetic resonance-based hydrogen gas sensing. International Journal of Hydrogen Energy, 47(12), 8155-8163. doi:10.1016/j.ijhydene.2021.12.135en_AU
dc.identifier.issn0360-3199en_AU
dc.identifier.issue12en_AU
dc.identifier.journaltitleInternational Journal of Hydrogen Energyen_AU
dc.identifier.pagination8155-8163en_AU
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2021.12.135en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15842en_AU
dc.identifier.volume47en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectIron oxidesen_AU
dc.subjectPalladiumen_AU
dc.subjectHydrogenen_AU
dc.subjectGasesen_AU
dc.subjectFerromagnetic resonanceen_AU
dc.subjectTransition elementsen_AU
dc.subjectSynthesisen_AU
dc.subjectNanostructuresen_AU
dc.titleIron oxide-palladium core-shell nanospheres for ferromagnetic resonance-based hydrogen gas sensingen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections