Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/9757
Title: Ion beam irradiation of ABO4 compounds with the fergusonite, monazite, scheelite, and zircon structures
Authors: de los Reyes, M
Aughterson, RD
Gregg, DJ
Middleburgh, SC
Zaluzec, NJ
Huai, P
Ren, C
Lumpkin, GR
Keywords: Irradiation
Ion beams
Oxides
Monazites
Zircon
Crystals
Amorphous state
Frenkel defects
Issue Date: 4-Jun-2020
Publisher: https://doi.org/10.1111/jace.17288
Citation: de los Reyes, M., Aughterson, R. D., Gregg, D. J., Middleburgh, S. C., Zaluzec, N. J., Huai, P., Ren, C., & Lumpkin, G. R. (2020). Ion beam irradiation of ABO4 compounds with the fergusonite, monazite, scheelite, and zircon structures. Journal of the American Ceramic Society, 103 (10). 5502– 5514. doi:10.1111/jace.17288
Abstract: The effects of irradiation on CaWO4, SrWO4, BaWO4, YVO4, LaVO4, YNbO4, and LaNbO4 were investigated on thin crystals using 1.0 MeV Kr ions at 50‐1000 K. All of the ABO4 compounds can be amorphized with calculated damage cross sections (σa = 1/Fc0) in the range of ~0.30‐1.09 × 10‐14 cm2 ion−1 at zero Kelvin. The analysis of fluence‐temperature data returned critical temperatures for amorphization (Tc) of 311 ± 1, 358 ± 90, 325 ± 19, 415 ± 17, 541 ± 6, 636 ± 26, and 1012 ± 1 K, respectively, for the compounds listed above. Compared with previous in situ irradiation of ABO4 orthophosphate samples using 0.8 MeV Kr ions, the Tc values of LaVO4 and YVO4 are higher than those of LaPO4 and YPO4 by 82 K and 124 K, respectively. The Tc values of the three scheelite structures, CaWO4, SrWO4, and BaWO4, indicate that they are the most radiation tolerant compounds under these conditions. The A‐B cation anti‐site energies, EfAB, determined by DFT range from 2.48 to 10.58 eV and are highly correlated with the A‐B cation ionic radius ratio, rA/rB, but are not correlated with Tc across the different structure types, suggesting that the formation and migration energies of Frenkel defects play a more important role in damage recovery in these compounds. We also discuss the role of cation and anion charge/iconicity as determined by DFT. ABO4 compounds with the zircon structure and B = P or V have a distinct advantage over those with B = Si as the damaged regions do not appear to be significantly affected by polymerization of (PO4)3− or (VO4)3− groups which might stabilize the amorphous fraction and ultimately lead to phase separation as observed in zircon (ZrSiO4). © 1999-2020 John Wiley & Sons, Inc.
Gov't Doc #: 9991
URI: https://doi.org/10.1111/jace.17288
http://apo.ansto.gov.au/dspace/handle/10238/9757
ISSN: 0002-7820
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.