Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/9201
Title: The ANSTO isotope cycling system
Authors: Watt, GC
Boronkay, S
Smith, AM
Hotchkis, MAC
Keywords: ANSTO
Accelerators
Mass spectroscopy
Ion beams
Faraday cups
Array processors
Isotopes
Issue Date: 9-Feb-2016
Publisher: Cambridge University Press
Citation: Watt, G. C., Boronkay, S., Smith, A. M., & Hotchkis, M. A. C. (2013). The ANSTO isotope cycling system. Radiocarbon, 55(2), 308-318. doi:10.1017/S0033822200057416
Abstract: A number of electronic systems are used on the ANTARES accelerator at ANSTO to implement its fast cycling accelerator mass spectrometry (AMS) capability. The fast cycling system was originally installed and commissioned in 1993 and has recently been updated. This paper describes the more significant of the electronic systems, such as the controller ("sequencer"), the high-voltage power supply ("bouncer"), the fast electrostatic beam chopper, and those used for measurement of the pulsed ion beam current. The sequencer, a programmable 15-bit digital pulse generator, generates the timing and sequencing of the control signals for bouncing voltage selection, beam chopping, Faraday cup current measurement, and rare isotope event measurement. The new sequencer is implemented using a National Instruments FPGA (field programmable gate array) card, programmed using LabVIEW 2010. This device has the benefits of host CPU-independent operation, simple interfacing (PCI), a small footprint, off-the-shelf availability at modest cost, and ease of functionality upgrade. The sequencer provides 15 synchronous digital signals, whose "on" and "off" transitions can be independently specified, in both number and time, with a time resolution of between 0.5 and 128 μs, and with the total duration between repetitions adjustable between 65.5 ms and 8.4 s per cycle. It is hosted by a generic PC because of the low-cost and ubiquity of these. The stand-alone FPGA-based approach ensures that the sequencer determinism is unaffected by processes executing in the host CPU. © 2013 Arizona Board of Regents on behalf of the University of Arizona
Gov't Doc #: 8626
URI: https://doi.org/10.1017/S0033822200057416
http://apo.ansto.gov.au/dspace/handle/10238/9201
ISSN: 1945-5755
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.