Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/4345
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKearley, GJ-
dc.contributor.authorStare, J-
dc.contributor.authorKutteh, R-
dc.contributor.authorDaemen, LL-
dc.contributor.authorHartl, MA-
dc.contributor.authorEckert, J-
dc.date.accessioned2012-06-20T02:43:12Z-
dc.date.available2012-06-20T02:43:12Z-
dc.date.issued2012-03-08-
dc.identifier.citationKearley, G. J., Stare, J., Kutteh, R., Daeman, L. L., Hartl, M. A., & Eckert, J. (2012). Methyl dynamics flattens barrier to proton transfer in crystalline tetraacetylethane. Journal of Physical Chemistry A, 116(9), 2283-2291. doi:10.1021/jp210212qen_AU
dc.identifier.govdoc4322-
dc.identifier.issn1089-5639-
dc.identifier.urihttp://dx.doi.org/10.1021/jp210212qen_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/4345-
dc.description.abstractWe analyze the interplay between proton transfer in the hydrogen-bond bridge, O center dot center dot center dot H center dot center dot center dot O, and lattice dynamics in the model system tetraacetylethane (TAB) (CH(3)CO)(2)CH=CH(COCH(3))(2) using density functional theory. Lattice dynamics calculations and molecular dynamics simulations are validated against neutron scattering data. Hindrance to the cooperative reorientation of neighboring methyl groups at low temperatures gives a preferred O atom for the bridging proton. The amplitude of methyl torsions becomes larger with increasing temperature, so that the free-energy minimum for the proton becomes flat over 0.2 angstrom. For the isolated molecule, however, we show an almost temperature-independent symmetric double-well potential persists. This difference arises from the much higher barriers to methyl torsion in the crystal that make the region of torsional phase space that is most crucial for symmetrization poorly accessible. Consequently, the proton-transfer potential remains asymmetric though flat at the base, even at room temperature in the solid. © 2012, American Chemical Society.en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectProtonsen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectCrystallizationen_AU
dc.subjectApproximationsen_AU
dc.subjectDensityen_AU
dc.subjectCrystal latticesen_AU
dc.titleMethyl dynamics flattens barrier to proton transfer in crystalline tetraacetylethaneen_AU
dc.typeJournal Articleen_AU
dc.date.statistics2012-06-20-
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.