Please use this identifier to cite or link to this item:
Title: Time-resolved diffraction measurements of electric-field-induced strain in tetragonal lead zirconate titanate.
Authors: Daniels, JE
Finlayson, TR
Studer, AJ
Hoffman, M
Jones, JL
Keywords: PZT
Neutron diffraction
Electric fields
Issue Date: 1-May-2007
Publisher: American Institute of Physics
Citation: Daniels, J. E., Finlayson, T. R., Studer, A. J., Hoffman, M., & Jones, J. L. (2007). Time-resolved diffraction measurements of electric-field-induced strain in tetragonal lead zirconate titanate. Journal of Applied Physics, 101(9), 6. doi:10.1063/1.2720255
Abstract: The dynamic electric-field-induced strain in piezoelectric ceramics enables their use in a broad range of sensor, actuator, and electronic devices. In piezoelectric ceramics which are also ferroelectric, this macroscopic strain is comprised of both intrinsic (piezoelectric) and extrinsic (non-180 degrees domain switching) strain components. Extrinsic contributions are accompanied by hysteresis, nonlinearity, and fatigue. Though technologically significant, direct measurement of these mechanisms and their relative contributions to the macroscopic response has not yet been achieved at driving frequencies of interest. Here we report measurements of these mechanisms in ceramic lead zirconate titanate during application of subcoercive cyclic driving electric fields using an in-situ stroboscopic neutron diffraction technique. Calculations are made from the diffraction measurements to determine the relative contributions of these different strain mechanisms. During applied electric field square waves of +0.5E(c) unipolar and +/- 0.5E(c) bipolar, at 1 Hz, non-180 degrees domain switching is found to contribute 34% and 40% of the macroscopically measured strain, respectively. © 2007, American Institute of Physics
Gov't Doc #: 1167
ISSN: 0021-8979
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.