Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/11343
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGraham, PJ-
dc.contributor.authorNarayanan, N-
dc.contributor.authorReynolds, NM-
dc.contributor.authorLi, F-
dc.contributor.authorRovillain, P-
dc.contributor.authorBartkowiak, M-
dc.contributor.authorHester, JR-
dc.contributor.authorKimpton, JA-
dc.contributor.authorYethiraj, M-
dc.contributor.authorPomjakushina, E-
dc.contributor.authorConder, K-
dc.contributor.authorKenzelmann, M-
dc.contributor.authorMcIntyre, GJ-
dc.contributor.authorHutchison, WD-
dc.contributor.authorUlrich, C-
dc.date.accessioned2021-08-12T23:44:59Z-
dc.date.available2021-08-12T23:44:59Z-
dc.date.issued2015-02-02-
dc.identifier.citationGraham, P. J., Narayanan, N., Reynolds, N., Li, F., Rovillain, P., Bartkowiak, M., Hester, J., Kimpton, J., Yethiraj, M., Pomjakushina, E., Conder, K., Kenzelmann, M., McIntyre, G., Hutchison, W., D., & Ulrich, C. (2015). Effects of 18O isotope substitution in multiferroic RMnO3 (R=Tb, Dy). Paper presented at the 39th Annual Condensed Matter and Materials Meeting, Charles Sturt University, Wagga Wagga, NSW, 3 February 2015 - 6 February 2015, (pp. 57). Retrieved from: https://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdfen_US
dc.identifier.isbn978-0-646-96433-1-
dc.identifier.urihttps://physics.org.au/wp-content/uploads/cmm/2015/Wagga2015_10_Handbook.pdfen_US
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11343-
dc.description.abstractMultiferroic materials demonstrate desirable attributes for next-generation multifunctional devices as they exhibit coexisting ferroelectric and magnetic orders. In type-II multiferroics, coupling exists that allows ferroelectricity to be manipulated via magnetic order and vice versa, offering potential in high-density information storage and sensor applications. Despite extensive investigations into the subject, questions of the physics of magnetoelectric coupling in multiferroics remain, and competing theories propose different mechanisms. The aim of this investigation was to study changes in the statics and dynamics of structural, ferroelectric and magnetic orders with oxygen-18 isotope substitution to shine light into the coupling mechanism in multiferroic RMnO3 (R=Tb, Dy) systems. We have performed Raman spectroscopy on 16O and 18O-substituted TbMnO3 single crystals. Oxygen-18 isotope substitution reduces all phonon frequencies significantly. However, specific heat measurements determine no changes in Mn3+ (28 and 41 K) magnetic phase transition temperatures. Pronounced anomalies in peak position and linewidth at the magnetic and ferroelectric phase transitions are seen. While the anomalies at the sinusoidal magnetic phase transition (41 K) are in accordance to the theory of spin-phonon coupling, further deviations develop upon entering the ferroelectric phase (28 K). Furthermore, neutron diffraction measurements on 16O and 18O-substituted DyMnO3 powders show structural deviations at the ferroelectric phase transition (17 K) in the order of 100 fm. These results indicate that the structure is actively involved in the emergence of ferroelectricity in these materials.en_US
dc.language.isoenen_US
dc.publisherAustralian Institute of Physicsen_US
dc.subjectCouplingen_US
dc.subjectCrystal structureen_US
dc.subjectElectric propertiesen_US
dc.subjectMagnetic fieldsen_US
dc.subjectMaganese oxidesen_US
dc.subjectMemory devicesen_US
dc.subjectNeutron diffractionen_US
dc.subjectOxygen isotopesen_US
dc.subjectPhase transformationsen_US
dc.subjectRaman spectroscopyen_US
dc.subjectSensorsen_US
dc.titleEffects of 18O isotope substitution in multiferroic RMnO3 (R=Tb, Dy)en_US
dc.typeConference Abstracten_US
dc.date.statistics2021-08-12-
Appears in Collections:Conference Publications

Files in This Item:
File Description SizeFormat 
Wagga2015_10_Handbook(1).pdf39.53 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.