Browsing by Author "Shimakawa, Y"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCharacterisation of Pb2Rh2O7 and Y2Rh2O7: an unusual case of pyrochlore stabilisation under high pressure, high temperature synthesis conditions(Royal Society of Chemistry (RSC), 2024-02-01) Injac, SD; Mullens, BG; Romero, FD; Avdeev, M; Barnett, C; Yuen, AKL; Patino, MA; Mukherjee, S; Vaitheeswaran, G; Singh, DJ; Kennedy, BJ; Shimakawa, YTwo novel oxides with Pb2Rh2O7 and Y2Rh2O7 compositions were synthesised using high pressure, high temperature techniques at 19 GPa and 8 GPa, respectively. Structurally, both compounds were determined to crystallise in the cubic pyrochlore structure, space group Fd[3 with combining macron]m, with no observed oxygen vacancies. Both oxides have effectively identical Rh–O bond lengths of 1.987 Å and a bond-valence sum (BVS) of 4.2 that confirm a Rh4+ oxidation state. Physical property measurements for Pb2Rh2O7 are consistent with a metallic ground state. This is similar to other Pb2M2O7 oxides where M = Ru, Ir, and Os. Y2Rh2O7 represents an unusual case of the lower density (6.356 g cm−3) pyrochlore structure being stabilised under high pressure conditions, while the analogous, higher density (7.031 g cm−3) perovskite YRhO3 is stabilised by synthesis under ambient pressure conditions. The Rh4+ state results in a S = ½ magnetic ground state. Magnetisation measurements suggest strong AFM coupling in Y2Rh2O7. However, long range AFM order is not observed down to 2 K presumably due to the geometric frustration of the pyrochlore lattice. Specific heat and resistivity measurements indicate a large electronic contribution to the heat capacity. The Wilson ratio of 4.78(11) is well above 2, indicating nearness to magnetism and the likely presence of Rh moments in the background of the conduction electrons. Catalytic activity indicated a greater correlation with other Rh pyrochlores as opposed to dependence on the Rh oxidation state. Facebook Twitter LinkedIn YouTube © Royal Society of Chemistry
- ItemOrthogonal antiferromagnetism to canted ferromagnetism in CaCo3Ti4O12 quadruple perovskite driven by underlying kagome lattices(Springer Nature, 2022-08-01) Amano Patino, M; Denis Romero, F; Koo, HJ; Avdeev, M; Injac, SDA; Goto, M; Whangbo, MH; Shimakawa, YAA′3B4O12 quadruple perovskites, with magnetic A′ and non-magnetic B cations, are characterized by a wide range of complex magnetic structures. These are due to a variety of competing spin-exchange interactions up to the fourth nearest neighbours. Here, we synthesize and characterize the magnetic behaviour of the CaCo3Ti4O12 quadruple perovskite. We find that in the absence of an external magnetic field, the system undergoes antiferromagnetic ordering at 9.3 K. This magnetic structure consists of three interpenetrating mutually orthogonal magnetic sublattices. Under an applied magnetic field, this antiferromagnetic structure evolves into a canted ferromagnetic structure. In explaining these magnetic structures, as well as the seemingly unrelated magnetic structures found in other quadruple perovskites, we suggest a crucial role played by the underlying kagome lattices in these systems. All observed magnetic structures of these materials represent indeed one of the three possible ways to reduce spin frustration in the A′ site kagome layers. More specifically, our survey of the magnetic structures observed for quadruple perovskites AA′3B4O12 reveals the following three ways to reduce spin frustration, namely to make each layer ferromagnetic, to adopt a compromise 120° spin arrangement in each layer, or to have a magnetic structure with a vanishing sum of all second nearest-neighbour spin exchanges. © The Authors - Open Access CC BY 4.0