Browsing by Author "Palomares, V"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemSodium distribution and reaction mechanisms of a Na3V2O2(PO4)2F electrode during use in a sodium-ion battery(American Chemical Society, 2014-05-13) Sharma, N; Serras, P; Palomares, V; Brand, HEA; Alonso, J; Kubiak, P; Fdez-Gubieda, ML; Rojo, TAmbient temperature sodium-ion batteries are emerging as an exciting alternative to commercially dominant lithium-ion batteries for larger scale stationary applications. In order to realize such a sodium-ion battery, electrodes need to be developed, understood, and improved. Here, Na 3V2O2(PO4)2F is investigated from the perspective of sodium. Reaction mechanisms for this cathode during battery function include the following: a region comprising at least three phases with subtly varying sodium compositions that transform via two two-phase reaction mechanisms, which appears at the lower potential plateau-like region during both charge and discharge; an extended solid solution region for majority of the cycling process, including most of the higher potential plateau; and a second two-phase region near the highest charge state during charge and between the first and second plateau-like regions during discharge. Notably, the distinct asymmetry in the reaction mechanism, lattice, and volume evolution on charge relative to discharge manifests an interesting question: Is such an asymmetry beneficial for this cathode? These reaction mechanisms are inherently related to sodium evolution, which shows complex behavior between the two sodium crystallographic sites in this compound that in turn mediate the lattice and reaction evolution. Thus, this work relates atomic-level sodium perturbations directly with electrochemical cycling. © 2014 American Chemical Society.
- ItemStructural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4)2F3−2x (x = 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction(Royal Society of Chemistry, 2014-01-31) Serras, P; Palomares, V; Rojo, T; Brand, HEA; Sharma, NSodium-ion batteries have become good candidates for energy storage technology. For this purpose it is crucial to search for and optimize new electrode and electrolyte materials. Sodium vanadium fluorophosphates are considered promising cathodes but further studies are required to elucidate their electrochemical and structural behavior. Therefore, this work focuses on the time-resolved in situ synchrotron X-ray powder diffraction study of Na 3V2O2x(PO4)2F 3-2x (x = 0.8) while electrochemically cycling. Reaction mechanism evolution, lattice parameters and sodium evolution, and the maximum possible sodium extraction under the applied electrochemical constraints, are some of the features that have been determined for both a fresh and an offline pre-cycled cell. The reaction mechanism evolution undergoes a solid solution reaction with a two-phase region for the first lower-potential plateau while a predominantly solid solution behavior is observed for the second higher-potential plateau. Lattice and volume evolution is clearly dependent on the Na insertion/extraction mechanism, the sodium occupancy and distribution amongst the two crystallographic sites, and the electrochemical cycling history. The comparison between the fresh and the pre-cycled cell shows that there is a Na site preference depending on the cell and history and that Na swaps from one site to the other during cycling. This suggests sodium site occupancy and mobility in the tunnels is interchangeable and fluid, a favorable characteristic for a cathode in a sodium-ion battery. © 2014 The Royal Society of Chemistry. This article is Open Access.
- ItemStructural evolution of mixed valent (V3+/V4+) and V4+ sodium vanadium fluorophosphates as cathodes in sodium-ion batteries: comparisons, overcharging and mid-term cycling(Royal Society of Chemistry, 2015-09-28) Palomares, V; Serras, P; Brand, HEA; Rojo, T; Sharma, NSodium vanadium fluorophosphates belonging to the Na3V2O2x(PO4)2F3−2x family of compounds have recently shown very good electrochemical performance versus Na/Na+ providing high working voltages (3.6 and 4.1 V) and good specific capacity values. In this work the electrochemical behaviour and structural evolution of two compositions, Na3V2O1.6(PO4)2F1.4 (V3.8+) and Na3V2O2(PO4)2F (V4+), are detailed using time-resolved in situ synchrotron X-ray powder diffraction. For the first time in sodium-ion batteries the effects of overcharging and mid-term cycling are analyzed using this technique. Differences in the composition of both materials lead to different combinations of biphasic and single-phase reaction mechanisms while charging up to 4.3 V and overcharging up to 4.8 V. Moreover, the analysis of particle size broadening of both samples reveals the higher stress suffered by the V4+ compared to the more disordered V3.8+ sample. The more “flexible” structure of the V3.8+ sample allows for maximum sodium extraction when overcharging up to 4.8 V while in the case of the V4+ sample no evidence is shown of more sodium extraction between 4.3 V and 4.8 V. Furthermore, the analysis of both materials after 10 cycles shows the appearance of secondary phases due to the degradation of the material or the battery itself (e.g. electrolyte degradation). This study shows examples of the possible degradation mechanisms (and phases) while overcharging and mid-term cycling which is in turn crucial to making better electrodes, either based on these materials or generally in cathodes for sodium-ion batteries. © The Royal Society of Chemistry 2015. This article is Open Access.