Browsing by Author "Goremychkin, EA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemElectron doping evolution of the magnetic excitations in BaFe(2-x)NixAs2(American Physical Society., 2013-10-25) Luo, HQ; Lu, XY; Zhang, R; Wang, M; Goremychkin, EA; Adroja, DT; Danilkin, SA; Deng, GC; Yamani, Z; Dai, PCWe use inelastic neutron scattering (INS) spectroscopy to study the magnetic excitations spectra throughout the Brillouin zone in electron-doped iron pnictide superconductors BaFe2-xNixAs2 with x = 0.096,0.15,0.18. While the x = 0.096 sample is near optimal superconductivity with T-c = 20 K and has coexisting static incommensurate magnetic order, the x = 0.15,0.18 samples are electron overdoped with reduced T-c of 14 and 8 K, respectively, and have no static antiferromagnetic (AF) order. In previous INS work on undoped (x = 0) and electron optimally doped (x = 0.1) samples, the effect of electron doping was found to modify spin waves in the parent compound BaFe2As2 below similar to 100 meV and induce a neutron spin resonance at the commensurate AF ordering wave vector that couples with superconductivity. While the new data collected on the x = 0.096 sample confirm the overall features of the earlier work, our careful temperature dependent study of the resonance reveals that the resonance suddenly changes its Q width below T-c similar to that of the optimally hole-doped iron pnictides Ba0.67K0.33Fe2As2. In addition, we establish the dispersion of the resonance and find it to change from commensurate to transversely incommensurate with increasing energy. Upon further electron doping to overdoped iron pnictides with x = 0.15 and 0.18, the resonance becomes weaker and transversely incommensurate at all energies, while spin excitations above similar to 100 meV are still not much affected. Our absolute spin excitation intensity measurements throughout the Brillouin zone for x = 0.096,0.15,0.18 confirm the notion that the low-energy spin excitation coupling with itinerant electron is important for superconductivity in these materials, even though the high-energy spin excitations are weakly doping dependent. © 2013, American Physical Society.
- ItemKondo behavior, ferromagnetic correlations, and crystal fields in the heavy-fermion compounds Ce3X (X = In, Sn).(American Physical Society, 2010-06-25) Wang, CH; Lawrence, JM; Christianson, AD; Goremychkin, EA; Fanelli, VR; Gofryk, K; Bauer, ED; Ronning, F; Thompson, JD; de Souza, NR; Kolesnikov, AI; Littrell, KCWe report measurements of inelastic neutron scattering, magnetic susceptibility, magnetization, and the magnetic field dependence of the specific heat for the heavy Fermion compounds Ce3In and Ce3Sn. The neutron scattering results show that the excited crystal field levels have energies E1=13.2 meV, E2=44.8 meV for Ce3In and E1=18.5 meV, E2=36.1 meV for Ce3Sn. The Kondo temperature deduced from the quasielastic linewidth is 17 K for Ce3In and 40 K for Ce3Sn. The low-temperature behavior of the specific heat, magnetization, and susceptibility cannot be well described by J=1/2 Kondo physics alone, but require calculations that include contributions from the Kondo effect, broadened crystal fields, and ferromagnetic correlations, all of which are known to be important in these compounds. We find that in Ce3In the ferromagnetic fluctuation makes a 10%–15% contribution to the ground state doublet entropy and magnetization. The large specific heat coefficient γ in this heavy fermion system thus arises more from the ferromagnetic correlations than from the Kondo behavior. © 2010, American Physical Society